
Writing project
An ideal recap

Notation. Throughout, V is a vector space over the field k, and T : V → V is a linear transfor-
mation. The zero vector of V is 0 = 0V and the zero transformation on V is denoted Z = ZV. This
is simply the operator defined by Z(v) = 0V for every v ∈ V, which Cooperstein denotes by 0V→V.
We will also assume that V is finite-dimensional, and that n = dim(V).

Polynomial operators.

(1) Consider polynomials p = p(x), q = q(x) in k[x]. Briefly, explain the meaning of the
operators p(T) : V → V, q(T) : V → V, and also why p(T)q(T), q(T)p(T), (pq)(T), (qp)(T)
all coincide (recall that, here, multiplication of operators is simply function composition).

Ideals.

Definition: A subset I of k[x] is an ideal of k[x] if the following conditions are satisfied.

• (Closure under sums) If f, g ∈ I, then f + g ∈ I.
• (Absorbing property) If f ∈ I and g ∈ k[x] then fg = gf ∈ I.

(2) Fix p ∈ k[x] and set I = {pq : q ∈ k[x]}, the set of all polynomial multiples of p. Prove that
I is an ideal. We call I the ideal generated by p and call p a generator for I.

(3) Prove that I = {f ∈ R[x] : f(π) = 0} is an ideal of R[x], and that there exists a polynomial
p ∈ I such that I is the ideal generated by p, i.e., all elements in I are multiples of p.

(4) Prove that every ideal I of k[x] has a generator. Hint: This is trivial if I = {0} (why?) so
let us assume that I ̸= {0}. Let p ∈ I be a nonzero polynomial with the smallest possible
degree. Take an arbitrary polynomial f ∈ I, divide it by p, and solve for the remainder.

(5) Explain why, most of the time, an ideal has infinitely many generators. If I is the ideal
generated by p and also the ideal generated by q, then how must p and q be related? Explain
why every ideal has a unique monic generator.

Minimal polynomials.

(6) Fix a vector v ∈ V. Prove that IT(v) = {f ∈ k[x] : f(T)(v) = 0} is an ideal.
Note: You are being asked to verify the conditions in the definition of an ideal.

(7) Prove that IT(v) contains a nonzero polynomial of degree at most n.
Hint: Consider the n+ 1 vectors v,T(v), . . . ,Tn(v) in the n-dimensional vector space V.

(8) Review the definition of the minimal polynomial of T with respect to v, denoted by Coop-
erstein as µT,v(x) ∈ k[x]. Justify Remark 4.1 of Cooperstein.

(9) Solve Problem 4.1: 4 in Cooperstein.
(10) Prove that IT = {f ∈ k[x] : f(T) = ZV} is an ideal that contains a nonzero polynomial

of degree at most n2. Review the definition of the minimal polynomial of T, denoted by
Cooperstein as µT(x) ∈ k[x]. Justify Remarks 4.4 and 4.5 of Cooperstein. Hint: Use the
fact that the vector space L(V) has dimension n2, and mimic your previous arguments.

Cyclic subspaces. Fix a vector v ∈ V.

Definition: The T-cyclic subspace generated by v

⟨T,v⟩ = span(v,T(v),T2(v),T3(v), . . .) = {p(T)(v) : p(x) ∈ k[x]}.

(11) Briefly justify the second equality in the above definition.
(12) Solve Problem 4.2: 1 in Cooperstein.
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(13) Set W = ⟨T,v⟩. Prove that if µT,v(x) has degree d, then v,T(v), . . . ,Td−1(v) is a basis for
W. Note: You must show that this list generates W and is linearly independent.

(14) Prove that if V = ⟨T,v⟩, then µT,v(x) = µT(x). Hint: Earlier, you justified Cooperstein
4.5, and so you know that µT,v divides µT. To finish, you must show that µT,v(T) = ZV

(why?). To do this, use the assumption that V = ⟨T,v⟩ and the first problem above.
(15) MORE TO COME.


