WRITING PROJECT AN IDEAL RECAP

Notation. Throughout, V is a vector space over the field k, and $T: V \to V$ is a linear transformation. The zero vector of V is $\mathbf{0} = \mathbf{0}_V$ and the zero transformation on V is denoted $Z = Z_V$. This is simply the operator defined by $Z(\mathbf{v}) = \mathbf{0}_V$ for every $\mathbf{v} \in V$, which Cooperstein denotes by $\mathbf{0}_{V \to V}$. We will also assume that V is finite-dimensional, and that $n = \dim(V)$.

Polynomial operators.

(1) Consider polynomials p = p(x), q = q(x) in k[x]. Briefly, explain the meaning of the operators $p(T) : V \to V, q(T) : V \to V$, and also why p(T)q(T), q(T)p(T), (pq)(T) all coincide (recall that, here, multiplication of operators is simply function composition).

Ideals.

Definition: A subset I of k[x] is an *ideal of* k[x] if the following conditions are satisfied.

- (Closure under sums) If $f, g \in I$, then $f + g \in I$.
- (Absorbing property) If $f \in I$ and $g \in k[x]$ then $fg = gf \in I$.
- (2) Fix $p \in k[x]$ and set $I = \{pq : q \in k[x]\}$, the set of all polynomial multiples of p. Prove that I is an ideal. We call I the ideal generated by p and call p a generator for I.
- (3) Prove that $I = \{ f \in \mathbb{R}[x] : f(\pi) = 0 \}$ is an ideal of $\mathbb{R}[x]$, and that there exists a polynomial $p \in I$ such that I is the ideal generated by p, i.e., all elements in I are multiples of p.
- (4) Prove that every ideal I of k[x] has a generator. **Hint**: This is trivial if $I = \{0\}$ (why?) so let us assume that $I \neq \{0\}$. Let $p \in I$ be a nonzero polynomial with the smallest possible degree. Take an arbitrary polynomial $f \in I$, divide it by p, and solve for the remainder.
- (5) Explain why, most of the time, an ideal has infinitely many generators. If I is the ideal generated by p and also the ideal generated by q, then how must p and q be related? Explain why every ideal has a unique monic generator.

Minimal polynomials.

- (6) Fix a vector $\mathbf{v} \in V$. Prove that $I_{\mathsf{T}}(\mathbf{v}) = \{ f \in \mathsf{k}[x] : f(\mathsf{T})(\mathbf{v}) = 0 \}$ is an ideal. **Note**: You are being asked to verify the conditions in the definition of an ideal.
- (7) Prove that $I_{\mathsf{T}}(\mathbf{v})$ contains a nonzero polynomial of degree at most n. **Hint**: Consider the n+1 vectors $\mathbf{v}, \mathsf{T}(\mathbf{v}), \ldots, \mathsf{T}^n(\mathbf{v})$ in the n-dimensional vector space V .
- (8) Review the definition of the minimal polynomial of T with respect to \mathbf{v} , denoted by Cooperstein as $\mu_{\mathsf{T},\mathbf{v}}(x) \in \mathsf{k}[x]$. Justify Remark 4.1 of Cooperstein.
- (9) Solve Problem 4.1: 4 in Cooperstein.
- (10) Prove that $I_{\mathsf{T}} = \{ f \in \mathsf{k}[x] : f(\mathsf{T}) = \mathsf{Z}_{\mathsf{V}} \}$ is an ideal that contains a nonzero polynomial of degree at most n^2 . Review the definition of the minimal polynomial of T , denoted by Cooperstein as $\mu_{\mathsf{T}}(x) \in \mathsf{k}[x]$. Justify Remarks 4.4 and 4.5 of Cooperstein. **Hint**: Use the fact that the vector space $\mathcal{L}(\mathsf{V})$ has dimension n^2 , and mimic your previous arguments.

Cyclic subspaces. Fix a vector $\mathbf{v} \in V$.

Definition: The T-cyclic subspace generated by \mathbf{v} $\langle \mathsf{T}, \mathbf{v} \rangle = \mathrm{span}(\mathbf{v}, \mathsf{T}(\mathbf{v}), \mathsf{T}^2(\mathbf{v}), \mathsf{T}^3(\mathbf{v}), \ldots) = \{p(\mathsf{T})(\mathbf{v}) : p(x) \in \mathsf{k}[x]\}.$

- (11) Briefly justify the second equality in the above definition.
- (12) Solve Problem 4.2: 1 in Cooperstein.

- (13) Set $W = \langle \mathsf{T}, \mathbf{v} \rangle$. Prove that if $\mu_{\mathsf{T}, \mathbf{v}}(x)$ has degree d, then $\mathbf{v}, \mathsf{T}(\mathbf{v}), \dots, \mathsf{T}^{d-1}(\mathbf{v})$ is a basis for W. **Note**: You must show that this list generates W and is linearly independent.
- (14) Prove that if $V = \langle T, \mathbf{v} \rangle$, then $\mu_{T,\mathbf{v}}(x) = \mu_T(x)$. **Hint**: Earlier, you justified Cooperstein 4.5, and so you know that $\mu_{T,\mathbf{v}}$ divides μ_T . To finish, you must show that $\mu_{T,\mathbf{v}}(T) = \mathsf{Z}_V$ (why?). To do this, use the assumption that $\mathsf{V} = \langle T, \mathbf{v} \rangle$ and the first problem above.
- (15) MORE TO COME.