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Chapter 1

Vector Spaces

1.1. Fields

1. Let z = a + bi,w = ¢+ di with a,b,c,d € R. Then
|22 = a® + b2, |w|? = ¢ + d? and |z|?|w]* = (a® +
b2)(c? + d?) = a?c? + a%d® + b%c? + b2d?. On the other
hand, 2w = (ac — bd) + (ad + be)I and |zw|? = (ac —
bd)? + (ad+be)? = a®c? +b?d? — 2abed + a?d® + b2 +
2abed = a®c® + b?d? + a®d? + b2 2.

2. Part ii) of Theorem (1.1) follows from part i).

Part iii) of Theorem (1.1) 2Z = (a + bi)(a — bi) = a® —
abi + (bi)a — (bi)(bi) = a2 + b2 = |2[2.

3. Since C is a field and Q[¢] is a subset of C it suffices to
prove the following:

() If 2,y € Q[i] then = + y € Q[i];
(ii) If z € Q[i] then —x € QJi;

(iii) If 2,y € Q[i] then zy € Q[i]; and
(iv) If # € Q[i],z # 0 then L € Q[i].

(i) We can write x = a + bi, y = ¢+ di where a, b, c,d €
Q. Then a + ¢,b + d € Q and consequently, x + y =
(a+c)+ (b+d)i € Q[i].

(i) Ifx =a+bi,a,b € Qthen —a,—b € Q and —(a +
bi) = —a — bi € Qli].

(iii)) If z = a + bi,y = ¢+ di with a,b,c,d € Q then
ac, ad, be, bd € Q and therefore (a + bi)(c+ di) = [ac —
bd] + [ad + beli € Qi].

K23692_SM_Cover.indd 9

(iv) Assume that x = a + bi with a, b € Q not both zero.
Then in C we have (a + bi) ™" = %5 — z5zi. How-
ever, if a,b € Q then a® + b* € Q whence %> and
=2m eQ

a?+b

4. Write z = a+ bi,w = c+di. Then z +w = (a+c¢) +
(b+ d)i. Then z + w = (a + ¢) — (b + d)i. On the other
hand, Z = a—bi,w = ¢—di. ThenZ+w = (a—bi)+ (c—
di)=(a+c)+[(-b)+(=d)]i=(a+c)+(-b—d)i=
(a+c)— (b+d)i.

5. This follows from part ii. of Theorem (1.1.1) since if ¢
is a real number then ¢ = c. Therefore ¢z = ¢z = cz.

6. a) The addition table is symmetric which implies that
addition is commutative. Likewise the multiplication ta-
ble is symmetric from which we conclude that multiplica-
tion is commutative.

b) The entry in the row indexed by 0 and the column in-
dexed the element ¢ is 4 for ¢ € {0, 1,2, 3,4}.

c) Every row of the addition table contains a 0. If the row
is headed by the element a and the column in which the 0
occurs is indexed by b then a+b = 0. This establishes the
existence of a negative of a with respect to 0. Note that
since there is only one zero in each row and column, the
negative is unique.

d) The entry in the row indexed by 1 and the column in-
dexed the element ¢ is ¢ for ¢ € {1,2,3,4}.

e) Every row has a 1 in it. If the row is headed by the
element a and the column in which the 1 occurs is in-
dexed by c then ac = 1. This establishes the existence of

02/06/15 3:11 pm



Chapter 1. Vector Spaces

a multiplicative inverse of a with respect to 1. Note that
since each row and column has only a single 1, the mul-
tiplicative inverse of a non-zero element with respect to 1
is unique.

7. The additive inverse (negative) of 2 is 3. So add 3 to
both sides

(Bz+2)+3=4+3

3+ (2+3)=2

3r+0=2

3r =2

Now multiply by 2 since 2 -3 = 1.

2(3z) =2-2

(2-3)x=4
l-z=4
=4

The unique solution is x = 4.

8.
2 — (1 +2i) = —ix + (2 + 30)
Add 1 + 27 to both sides to obtain the equation
2r = —iz + (3 + 49)
Add iz from both sides to obtain
(2+i)x=3+4i

Divide by 2 + ¢ to obtain the equation

K23692_SM_Cover.indd 10

3+ 41

241

After multiplying the complex number on the right hand

side by 33 we obtain

_ (3+4i)(2-0)
(2+14)(2—1)

After performing the arithmetic on the right hand side we
get

r=2+4+1

9. Existence of an additive inverse, associativity of addi-
tion, the neutral character of 0, the existence of multiplica-
tive inverses for all non-zero elements, the associativity of
multiplication, the neutral character of 1 with respect to

multiplication.
1.2. The Space "
2i
.| —24+2¢
4—2i
2
2.1 6
—4
—64
3. 2
81
14+ 3¢
4. 2
-1+
-3+ 2
501 —2—1
1

02/06/15 3:11 pm



1.3. Introduction to Vector Spaces

1424
6. | 3+

3

0
7.10

0
8.

1
9. 14

2

3
10. |1

2

3_i
1. v=
Y (3+i>
4
12. v = (2>

1.3. Introduction to Vector
Spaces

1. Set x = 0. Then  + = 0 + = x. Now multiply
by the scalar c to get

c(x+x) =cx
After distributing we get
cx + cx = cx.
Set y = —(cx) and add to both sides of the equation:

y+(cx+cx)=y+cx

K23692_SM_Cover.indd 11

Use associativity on the left hand side to get

(y+cx)+cx=y+cx=0
O+cx=0

cr =0.
2. Assume cu = 0 but ¢ # 0. We prove that u = 0.
Multiply by 1 to get 2(cu) = 10 = 0 by part iii) of

Theorem (1.4). On the other hand, 1(cu) = (ic)u =
lu = u. Thus, u = 0.

3. Since v + (—v) = 0 it follows that v is the negative of
—v, that is, —(—v) = v.

4. Add the negative, —v, of the vector v to both sides of
the equation

v+tr=v+ty

to obtain
(—v) +[v+a] = (-v) +[v+y|
By the associativity property we have
(o) + o]+ =[(-v) +v] +y.
Now use the axiom that states (—v) + v = 0 to get
0+x=0+1y
Since 0 + x = x and 0 4+ y = y we conclude that
T=y.

5. Multiply on the left hand side by the scalar % :

(ex) = ~(cy),

Now make use of (M3) to get
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Chapter 1. Vector Spaces

1 1
[EC]CU = [EC]y-
Since %c =1 we get
le =1y

and then by (M4) we conclude

T =1y.

6. Let f,g,h € M(X,F) and a,b € F be scalars. We
show all the axioms hold.

(Al)Forany z € X, (f+g)(z) = f(z)+g(z). However,
addition in FF is commutative and therefore f(x)+g(z) =
g(x) + f(x) = (g + f)(z). Thus, the functions f + g and
g + f are identical.

(A2) Forany x € X,[(f +g) + h](z) = (f + g)(z) +
h(z) = [f(z) + g(x)] + h(z). This is just a sum of
elements in F. Addition in [F is associative and there-
fore [f(z) + g(x)] + h(x) = f(x) + [9(x) + h(z)] =
f(x)+ (g+ h)(x) = [f + (9 + h)](z). Thus, the func-
tions (f + g) + h and f + (g + h) are identical.
(A3) O is an identity for addition: (O + f)(z) =
f(@) =0+ f(x) =
(A4) Let — f denote the function from X to IF such that
(=f)(z) = = f(z). Then [(—f) + fl(z) = (=f)(=) +
f(z) = —f(x)+ f(z) = 0 and therefore (— f) + f = O.
MD) [a(f + 9)l(z) = alf + g)(@)] = a[f(z) + g(a)].
Now, a, f(z), g(x) are elements of F and the distributive
axiom holds in F and therefore a[f (z)+g(z)] = af (z)+
ag(x) = (af)(x) + (ag)(x) = [(af) + (ag)l(x). Thus,

the functions a(f + g) and (af) + (ag) are identical.

M2) [(a + b)f](z) = (a +b)f(x). Now a,b and f(x)
are all elements of the field I where the distributive ax-
iom holds. Therefore (a + b)f(x) = af(z) + bf(zx) =
(af)(z) + (bf)(z) = [af + bf](x). This shows that the
functions (a + b) f and af + bf are identical as required.
M3) [(ab)f](z) = (ab)f(zx). Since a,b, f(x) are in
F and the multiplication in F is associative we have

O(z)+
f(x) and consequently, O + f = f.

K23692_SM_Cover.indd 12

(ab)f(z) = a[bf(2)] = a[(bf)(x)] = [a(bf)](x). Thus,
the functions (ab) f and a(bf) are equal.

M4) (1f)(z) = 1f(z) = f(z) so 1f = f.

7. Let f,g,h € M(X,V) and a,b € F be scalars. We
show all the axioms hold.

(Al)Forany z € X, (f+g)(z) = f(x)+g(x). However,
addition in V' is commutative and therefore f(z)+g(z) =
g(x) + f(z) = (9 + f)(z). Thus, the functions f + g and
g + f are identical.

(A2) Forany z € X,[(f +g) + h](z) = (f + g)(z) +
h(z) = [f(z) + g(x)] + h(x). This is just a sum of
elements in V. Addition in V is associative and there-
fore [£(z) + g(x)] + h(z) = F(2) + [g(x) + h(z)] =
f(x) + (g + h)(x) = [f + (9 + h)](x). Thus, the func-
tions (f + g) + hand f + (g + h) are identical.

(A3) O is an identity for addition: (O + f)(z) =
f@) =0+ f(z) =

O(z)+
f(x) and consequently, O + f = f.

(A4) Let — f denote the function from X to V such that
(=f)(x) = —f(z). Then [(—f) + f](z) = (=f)(z) +
f(z) = =f(x)+ f(x) = 0 and therefore (—f) + f = O.

MD) [a(f + g9)l(x) = alf + g)(x)] = a[f(z) + g(z)].
Now, a is a scalar and f(z), g(x) € V. By (M1) applied to
V wehave a[f(x)+g(z)] = af(z)+ag(z) = (af)(z)+
(ag)(x) = [af +ag](z). Therefore the functions a(f + g)
and af + ag are equal.

M2) [(a + b)f](z) = (a + b) f(z). Now a,b are scalars
and f(z) € V. By axiom (M2) applied to V we have
(a+b)(f(x) = af(z) +bf(x) = (af)(x) + (bf)(x) =
[af + bf](z). Thus, the functions (a + b)f and af + bf

are equal.

M3) [(ab)f](z) = (ab)f(x). Since a,b € F and
f(x) € V we can apply (M3) for V and conclude that
[(ab) f](z) = (ab)f(z) = a[bf(z)] = a[(bf)(x)] =
[a(bf)](z). Thus, (ab) f = a(bf) as required.

(M4) Finally, (1f)(z) =

) = 1f(z)
to V and therefore 1 f = f.

= f(x) by (M4) applied

02/06/15 3:11 pm



1.3. Introduction to Vector Spaces

8. We demonstrate the axioms all hold.

then have

(u1,v1) + (U2, v2) = (U1 + ug, v1 + v2).

(u2,v2) + (u1,v1) = (U2 + w1, v2 + v1).

Since addition in U and addition in V is commutative,
U] + Uy = us + w1,V + v9 = vy + vy. Thus, the
vectors are equal. This establishes (A1).

[(u1,v1) + (uz,v2)] + (u3,v3) =
([wr + ua] + us, [v1 + va] + v3).
(u1,v1) + [(u2,v2) + (us, v3)] =
([ur + [uz2 + uz vy + [v2 + v3]).

Since addition in U and addition in V' is associative, the
results are identical. Thus, (A2) holds.

(u,v) + (0y,0w) = (u+ 0y, v +Oy) = (u,v).

So, indeed (0y, 0y ) is an identity for U x V with the
addition as defined.

Moreover,

(w,v) + (—u, —v) = (u+ (-u),v + (-v)) =

(u+ [~u],v + [-v]) = (0p, Ov).

cl(ur,v1) + (ug, v2)] = c(u1 + ug,v1 +v2) =

(clug + usg], c[vy + v3]) = (cuy + cug, cvy + cvs)

since the distributive property holds in U and V. On the
other hand,

K23692_SM_Cover.indd 13

So let
u,wy, Uz, u3 € U,v,v1,v2,v3 € V and ¢,d € F. We

(cu1 + cug, cvy + cvg) =
(C’lL1, C’Ul) + (C’UQ7 C’Ug) =

c(uy,v1) + c(ug, va).

For the second distributive property we have
[c+d](u,v) = ([c+d]u, [c+d]v) = (cu+du, cv+dv) =

(cu, cv) + (du, dv) = c(u,v) + d(u,v)

[ed](u,v) = ([cd]u, [cd]v) = (c[du], c[dv]) =

c(du, dv) = c[dul).
Finally,
1(u,v) = (lu, lv) = (u,v).

9. Let f,g,h € [[;c; Uisa,b €F.

(AD)Fori € I, (f+9)(i) = /(i)+g(i). Now f(i),g(i) €
U, and addition in U; is commutative and so f(i)+g(i) =
g(i)+ f(i) = (g+ f)(i). Since i € I is arbitrary, f +g =
g+

(A2) Fori € I, [(f + g) + hl(i) = (f + g) (i) + h(i) =
[f (@) + g(d)] + k(7). Now f(i), g(i), h(i) € U; and addi-
tion in U is associative. Therefore, [f (i) 4+ g(¢)] + h(i) =
f(@) +19@@) + h())] = £(i) + [g+ hl(@) = [fig + h)](D).
Since i € [ is arbitrary, (f +g) +h = f + (g + h).

(A3) [0 + f])i) = O(i) + f(i) = 0; + f(i) = f(i). So,
O+ f=Ff

(A4) Let — f denote the function from I to U;c such that
(=) = —f@) for i € I. Then [(—f) + f](i) =
(=)@ + f@) = —f@#@) + f(i) = 0; and therefore
(=f)+f=0.

02/06/15 3:11 pm



Chapter 1. Vector Spaces

(M1) Since (M1) applies to U; we have [a(f + ¢)](i) =
al(f + 9)@)] = alf(i) + 9(1)] = af(i) + ag(i) =
(af)(i) + (ag)(i) = [(af) + (ag)l(i) = [af + ag](z).
Thus, the functions a(f + g) and af + ag are equal.
M2) [(a + b)f](i) = (a + b)f(i). Now a, b are scalars
and f(i) € U,;. By axiom (M2) applied to U; we have
(@ +b)(f(i) = af(i) +bf(i) = (af)(i) + (bf)(i) =
[af + bf](i). Thus, the functions (a + b)f and af + bf
are equal.

(M3) [(ab) f](4) = (ab) f(3). Since a,b € Fand f(i) € U;
we can apply (M3) for U; and conclude that [(ab) f](i) =
(ab)f(i) = albf())] = a[(bf)(©)] = [a(bf)](i). Thus,
(ab)f = a(bf) as required.

(M4) Finally, (1f)(2) = 1f(¢) = f(¢) by (M4) applied to
U;. Since ¢ € I is arbitrary, 1 f = f.

10. (A1) Since for any two sets U, W we have U 6 W =
WoUwehave U +W =W + U.

(A2) We remark that for three sets U, W, Z that [UcW]o
Z consists of those elements of U U W U Z which are
contained in 1 or 3 of these sets. This is also true of U ©
[W & Z] and therefore we have [U4+W]+Z = U+ [W +
Z].
AND+U=OuU)\(ONU)=U\0=U.So, ) does
act like a zero vector.
AHU+U=0u)\(UNU)=U\U = 0. So,
indeed, U is the negative of U.

MDO-(U+W)=0. Also,0-U =0-W = ) and
D+0=0.

1. (U+W)=U+Wandl1-U=W,1-W =W and
sol-U4+1-W=U+W=1-(U+W).
M2)Ifa=bthena -U =b-Uanda-U+b-U =
a-U-+a-U = (. On the other hand, a + b = 0 and
0 - U = . Therefore we may assume a = 0,b = 1. Then
(a+b)-U =1-U =U. Onthe other hand, 0-U+1-U =
0+U="U.

(M3) If either @ = 0 or b = 0 then both (ab) - U = @) and

a- (b-U) = (. Therefore we may assume a = b = 1.
Clearly, 1 - U=U=1-(1-U).

K23692_SM_Cover.indd 14

(M4) This holds by the definition of 1 - U.

11. (A1) Since multiplication in R is commutative we
have

aira2\  faza1\
biby ) \baby )
a9 ay
)+ ()
(A2) Since multiplication in R™ is associative we have

()~ Gy () -

(5)+(5)-
()= ()

(o) = (o)
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1.4. Subspaces of Vector Spaces

agag _
bibs )
(9-2)-
1 2

M2)
e+ (5) = (s =
() = () + (o) -
o(5) +a ()
M3)

1.4. Subspaces of Vector
Spaces

1. In order for W to contain the zero vector there must
exist a, b such that

2 — 3b 4+ 1 =0
—2a + bb = 0
2a + b =0

which is equivalent to the linear system
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2¢ — 3b = -1
—2a + 5 = 0
2¢ + b = 0

which is inconsistent. Thus, W is not a subspace.

2. We show that I is not a subspace by proving it is not
closed under scalar multiplication. Specifically, W con-
tains the vector f(1,1) = 1+2X?2. However, we claim the
vector 2 + 4X? does not belong to W. If it did then there
exist a, b such that f(a,b) = ab+(a—b) X +(a+b) X? =
2 + 4X?2. We must then have

a — b =0
a + b = 4
This has the unique solution a = b = 2. However, then

ab = 4 # 2 as required.

x
y | € W sothat 3x — 2y 4+ 4z = 0. Then
z

3. Suppose

3(cx) —2(cy) +4(cz) = Bx — 2y +42)c=0c=0

cx
cy | € W and W is closed under
cz

scalar multiplication.

which implies that

x1 T2
Suppose | y1 | , | y2 | € W which implies that
Z1 z9

31[,’1 72y1 +4Zl :0:3$2 72y2 +422

It then follows that
(w1 4+ 2) = 2(y1 +y2) +4(21 + 22) =
[31‘1 — 2y + 42’1] + [3332 — 2y2 + 422] =0.

T1 T2 r1+ 22
This implies that | y1 | + [y2 | = | v1i+y2 | €W
Z1 22 z21 + 22

and W is closed under addition. Thus, WV is a subspace.
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Chapter 1. Vector Spaces

4. Set W = Uy € FU. In order to show that W is a
subspace we have to show that it is closed under addition
and scalar multiplication.

Closed under scalar multiplication. Assume ©x € W and
c is a scalar. By the definition of W there is an X € F
such that x € X. Since X is a subspace of V, cx € X and
hence cx € UyerU = W.

Closed under addition. We need to show if &, y € W then
x + y € W. By the definition of W there are subspaces
X,Y € Fsuchthat x € z,y € Y. By our hypothesis
there exists Z € F such that X UY C Z. It then follows
that x,y € Z. Since Z is a subspace of V,x +y € Z.
Then  +y € W and W is closed under addition as
claimed.

5. Assume u € U,w € W and c is a scalar. Then c¢(u +
w) = cu + cw. Since U is a subspace and u € U it
follows that cu € U. Similarly, cw € W. Then

cutw)=cu+cwelU+W.

6. Closed under scalar multiplication. Assume x € U U
W and c is a scalar. Then either * € U in which case
ce € Uorx € W and cx € W. In either case, cx €
U UW and U U W is closed under scalar multiplication.

Not closed under addition. Since U is not a subset of W
there exists u € U, u ¢ W. Since W is not a subset of U
thereisaw € W,w ¢ U. We claim that u +w ¢ UUW.
For suppose to the contrary that v = u+w € UUW.
Suppose v € U. Then w = v — w is the difference of
two vectors in U, whence w € U contrary to assumption.
Likewise, if v € W then u = v—w € W, a contradiction.
So,u+wisnotin UUW and U U W is not a subspace.

7. Let W = {(8) la € R}, X = {(2) b € R} and
Y{(Z) lc € R}.

8. Take X = {(8) la € R}LY = {(2) beR},Z =

{(Z) lc € R}
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9. Clearly, M;,(X,F) is a subset of M(X,F) so we
have to show that it is closed under addition and scalar
multiplication.

Closed under scalar multiplication.  Suppose [ €
Myin(X,F) and c is a scalar. If ¢ = 0 then cf is the
zero map with support equal to the empty set, which be-
longs to M ¢, (X,F). On the other hand, if ¢ # 0 then
spt(cf) = spt(f) is finite and so c¢f € My (X, F).

Closed under addition. Assume f,g € My, (X, F). If
x ¢ spt(f) U spt(g) the f(z) = g(x) = 0 and (f +
g)(x) = 0. This implies that spt(f+g) C spt(f)Uspt(g)
and is therefore finite. Thus, f + g € M4 (X, F).

10. Set W = {f € M(X,F)|f(y) = 0Vy € Y}. We
need to show W is closed under scalar multiplication and
addition.

Closed under scalar multiplication. Suppose f € W and
¢ is scalar, y € Y. Then (c¢f)(y) = c¢f(y) = ¢0 = 0.
Since y is arbitrary, cf € W.

Closed under addition. Suppose f,g € W and y € Y.
Then (f +9)(y) = f(y) +9(y) =0+ 0=0.

11. This is clearly not a subspace since the zero vector
does not belong to it.

12. Closed under scalar multiplication. Suppose [ €
> icr Ui so that spt(f) is finite and c is a scalar. If ¢ = 0
then cf is the zero vector of [ ], U; which has support
the empty set and is in ) ,_; U;. On the other hand, if
¢ # 0 then spt(cf) = spt(f) and so is finite and cf €

Zie] Us.

Closed under addition. Suppose f,g € >, ; U;. Asin
the proof of 14, spt(f + g) C spt(f) U spt(g) and sois a
finite subset. Then f + g € Y, U,.

13. Assume x € X NY + Z. Then there are vectors
yeY,ze Zsuchthate =y+ 2. Thenz = — y.
Since Y C X,y € X and because X a subspace we can
conclude that z =  — y € X. In particular, z € X N Z.
Thus, x € Y + (X N Z). This proves that X N (Y + Z) C
Y+ (XN2Z).
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1.5. Span and Independence

Conversely, assume thatw € Y+ (XNZ). Write uw = y+
zwherey € Y and z € XNZ. Thenclearly,u € Y + Z.
On the other hand, since Y C X,z € XN Z, and X is a
subspace, we can conclude that u = y + z € X. Thus,
u € XN (Y + Z). This proves that Y + (X N Z) C
X N (Y 4+ Z) and therefore we have equality.

14. We need to show that M,4q4(R,R) is closed under
addition and scalar multiplication.

Closed under addition. Assume f,g € Myqa(R,R)
so that f(—z) = —f(x),9(—x) = —g(z). Then (f +
9)(—z) = f(-2) + g(-2) = —f(x) + —g(2)
—(f +9)(z).

Closed under scalar multiplication.  Assume f €
Myaa(R,R) and ¢ € R. Then (¢f)(—z) = ¢f(—x) =
c[=f(x)] = (=ef)(x).

1.5. Span and Independence

1. We need to show that Span(X) C Span(Y') and, con-
versely, that Span(Y) C Span(X). Since by hypoth-
esis, X C Span(Y) it then follows that Span(X) C
Span(Span(Y)) = Span(Y’). In exactly the same way
we conclude that Span(Y) C Span(X) and we obtain
the desired equality.

2. Clearly, u, cu + v are both linear combinations of u, v
and consequently, u, cu + v € Span(u, v). On the other
hand, v = (—c)u + (cu + v) is a linear combination of
u and cu + v. Whence, both uw and v are linear combi-
nations of u,cu + v and so u,v € Span(u,cu + v).
Now by exercise 1 we have the equality Span(u,v) =
Span(u, cu + v).

3. Clearly cu,v € Span(u,v). On the other hand,
u = (1)(cu) + Ov is in Span(cu,v). Thus, u,v €
Span(cu,v) and, using exercise 1, we get the equality
Span(u,v) = Span(cu, v).

4. Since V1, C1201 + V2, C13V1 + Co3V2 + V3
are all linear combinations of wvi,wvs1,v3 it follows
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that Span(vi,c12v1 + v, c13v1 + co3v2 + v3}) C
Span(vl, V2, ’03).

On the other hand, v = (—c12)v1 + [c1201 + v2

v3 = (—c13 + c12023)V2 + (—c23)(c12v + 1 4+ v2)+
(c13v1 + c23v3 + v3).

Thus, vy, vo, v3 are all linear combinations of v, c1ov1 +
Vo4 and c13v1 + c23v2 + v3. It now follows from exer-
cise 1 that Span('vl, V2, ’1}3) = Span(vl, C1201,C1301 +
C23V2 + 1)3).

5. If v = 0 then 1v = O and therefore O is linear depen-
dent. On the other hand, if cv = 0, ¢ # 0 then v = 0.

6. Assume v = yu. Since v # 0, # 0. Then (—v)u +
1lv = 0 s a non-trivial dependence relation on (u, v) and
consequently, (u,v) is linearly dependent.

Conversely, assume that (u, v) is linearly dependent and
neither vector is 0. Suppose au + bv = 0. If a = 0
then bv = 0 which by exercise implies that v = 0, a
contradiction. So, a # 0. In exactly the same way, b # 0.

b

_a 5
a

Now v = (=% )u,u = (-
and u is a multiple of v.

Ju so v is a multiple of u

7. Multiply all the non-zero vectors by 0 and the zero
vector by 1. This gives a non-trivial dependence relation
and so the sequence of vectors is linearly dependent.

8 Ifi < jand v; = v; thenletc; = 1,¢; = —1 and
set all the other scalars equal to 0. In this way we obtain
a non-trivial dependence relation.

9. Extend a non-trivial dependence relation on the vectors
of Sy to a dependence relation on S by setting the scalars
equal to zero for every vector v € S\ Sp.

10. This is logically equivalent to exercise 9. Alterna-
tively, assume that some subsequence of S is linearly de-
pendent. Then by exercise 9 the sequence S is dependent,
a contradiction.

11. Assume Span(ui,...
{0}. Suppose ¢y, . .

,ug) N Span(vy,...,v) =

., Ck,d1,...,d; are scalars and
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ciuy + -+ epup +divy + - + dyvy :{0}
Then
ciuy + -+ cpup = (7d1)’l)1 + -+ (7dl)vl'

The vector cyuy +- - - +cug, € Span(uq, ..., ug) while
dyvy+---+div; € Span(vy, ..., v;). By hypothesis the
only common vector is the zero vector. Therefore

ciuy + -+ cup =0

divi+---+dv, =0

However, since (w1, ..., uy) is linearly independent we

getcy = -+ = ¢, = 0. Similarly, d; = -+ = d; =
0. This implies that (wq,...,uk,v1,...,v;) is linearly
independent.

On the other hand, suppose 0 # w €
Span(wy,...,ux) N Span(vy,...,v;). Then there
are scalars ¢y, ..., cg,dq,...,d; such that

w=ciu; + -+ cpug
w = dyvy + -+ dyvy.

Note that since w # O at least one ¢; and d; is non-zero.
Now we have

caui+- - Fepup+(—dy)vi+- -+ (—d))v = w—w =0

is a non-trivial dependence relation and therefore

(u1,...,uk,v1,...,v;) is linearly dependent.

12. Since w € Span(uq,..
¢, ...,CL,dsuch that

., Uk, v) there are scalars

w=ciuy +...cpu + dv.
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If d = 0 then w € Span(uy,...,u) contrary to our
hypothesis. Therefore, d # 0. But then
C1 Ck

1
v = (fg)ul + 4 (*E)Uk + -

Thus, v € Span(uy, ..., u, w) as required.

13. Let c¢q,c2,c3 be scalars, not all zero, such that
c1(v1 + w) + c2(v2 + w) + c3(vs + w) = 0. Claim
¢1 + c2 + ¢c3 # 0. Suppose otherwise. Then 0 =
c1(v1+w) +ca(ve+w) +c3(vs+w) = c1v1 +cova+
c3V3 4 (€1 4 ca 4 c3)w = 101 + cav2 + c3v3, contrary to
the hypothesis that (vy, va, v3) is linearly independent. Tt
now follows that w = —m (c1v1 +cave +c3v3) €
Span(vy,va, v3).

1.6. Bases and Finite

Dimensional Vector Spaces

1. Let B be a basis of V. B has 4 elements since
dim(V') = 4.

a) Suppose S spans V and |S| = 3. Since B is a basis,
in particular, 3 is linearly independent. Now by the Ex-
change theorem, 3 = |S| > |B| = 4, a contradiction.

b) Suppose Z is a linearly independent subset of V' with
five elements. Since B is a basis it spans V. By the ex-
change theorem, 5 = |Z| < |B| = 4, a contradiction.

2. fU C W then, since dim(U) = dim(W) = 3 we
must have U = W by Theorem (1.22) which contradicts
the assumption that U # W. So, U is not contained in
W (and similarly, W is not contained in U). It now fol-
lows that the subspace U + W of V' contains U as well as
vectors not in U. Then 4 = dim(V') > dim(U + W) >
dim(U) = 3 which implies that dim(U + W) = 4. By
part ii) of Theorem (1.22), U + W = V.

Since W is not contained in U we know that U N W is a
proper subset of U and hence dim(UNW) < dim(U) =
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3. It therefore suffices to prove that dim(UNW) > 2. Let
(u1,u2,ug) be abasis for U and (w;, wa, w3) be a basis
for W with ws ¢ U. If Span(w;,w3) N U = {0} then
by Exercise (1.5.11) the sequence (w1, us, us, w1, Ws)
is linearly independent which contradicts the assumption
that dim (V') = 4. Thus, Span(wy, w3)NU # {0}. Since
w; ¢ U any non-zero vector aw; + bws which is in U
must have a # 0. By multiplying by % we can say there
is an ¢ € FF such that w; 4+ cw € U. In exactly the same
way we can conclude that there must be a d € FF such that
ws + dws € U. We claim that (w; + cws, ws + dws) is
linearly independent. Suppose e;,es € F and

el (w1 + cw3) + €2(’UJ2 + d’wg) =0

Then e;w; + esws + (ceq + deg)ws = 0. However,
since (w1, ws, ws) is linearly independent we must have
€1 = €y = 0.

Since (w; + cws, wy + dws) is a linearly independent
sequence from UNW we conclude that dim(UNW) > 2.

3. By Exercise (1.5.11) the sequence
(w1, ug, wi, we, ws) is linearly independent and so it
suffices to show that (w1, w2, w1, ws, ws) is a spanning
sequence. Toward that end consider an arbitrary vector
v € U 4+ W. By the definition of U + W there are vectors
uw € Uand w € W such that v = u + w. Since u € U
and (w1, us) is a basis for U there are scalars a1, a9 € F
such that 4 = aju; + asue. Similarly, there are scalars
b1, bo, b3 € FF such that w = bywq + bows + b3ws. Thus,
v =u+w = ajui + asus + bywy + bows + bzws and
therefore (w1, ug, w1, we, w3) is a spanning sequence as
required.

4. We are assuming that dim(V) = n,S =
(’Ul, Vo, ..
spans V. We need to prove that S is linearly independent.
For1 < j < nlet S — v; denote the sequence obtained
from S by deleting v;.

.,p) is a sequence of vectors from V' and S

Suppose to the contrary that S is not linearly independent.
Then for some j,1 < j < n,v; is a linear combination of
S —wv; by Theorem (1.14). Then by Theorem (1.13), V =
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Span(S) = Span(S — v;). But then by the exchange
theorem no independent sequence of V' can have more
than n — 1 vectors which contradicts the assumption that
bases have cardinality n.

5. We are assuming dim(V) = n, S = (v1,v2,...,0n)
with m > n and Span(S) = V. We have to prove that
some subsequence of S is a basis of V. Toward that end,
let Sy be a subsequence of S such that Span(Sy) = V
and the length of .Sy is as small as possible. We claim that
Sp is linearly independent and therefore a basis of V. Let
So = (w1, ws, ..., wy) and assume to the contrary that
So is linearly dependent. Then for some j, 1 < j < k, w;
is a linear combination of Sy — w; by Theorem (1.14).
Then by Theorem (1.13), V' = Span(Sp) = Span(Sy —
wj). However, this contradicts the assumption that Sy is
a spanning subsequence of S of minimal length. Thus, Sy
is linearly independent and a basis as claimed.

6. Assume dim(U N W) = [, dim{U) -1 =
m,dim(W) — 1 = n (so that &im(U) = | + m and
dim(W) = 1| + n). Choose a basis (x1,...,x;) for
U N W. This can be extended to a basis of U. Let
(uq,...,un) be a sequence of vectors from U such that

(e1,...,2;,U1,...,Uy) is a basis for U. Likewise there
is a sequence of vectors (wi,...,w,) from W such
that (xq,...,@;, wy,...,w,) is a basis for W. We claim
that (&1, ..., U1, .., Uy, W ..., W,) is a basis for
U+w.

We first show that S =
(T1,..., ¢, U1, ..., Uy, W1 ..., Wy,) is linearly in-

dependent. Suppose a;,1 < i < [1,b;,1 < j < m and
¢k, 1 < k < n are scalars such that

a1z + -+ oz +hur + -+ byt

cawi + -+ cpw, = 0.

We then have that

aey + -+ axp by + -+ Uy =
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(1.1)

—(c1wy + -+ + chwy)

Note the vector on the left hand side of Equation (1.1)
belongs to U and the vector on the right hand side be-
longs to W. Therefore, since we have equality the vec-
tor belongs to U N W = Span(xq,...,2;). However,
since (1, ..
by Exercise (1.5.11) we must have Span(xy,...,x;) N
Span(wi, ..., wy,) = {0}. Consequently,

., &y, W1, ..., Wy,) is linearly independent,

axy+ -+ a® by A by, =
—(clwl +.. -ann) =0.

.,wy,) is linearly independent
- = ¢, = 0. Also, since

However, since (ws,..
this implies that ¢; =
(x4, .. , Wyp,) is linearly independent we get
ap =---=a; =by =--- = by, = 0. Thus, all a;, bj, ¢y,
are zero and the sequence S is linearly independent.

L, UL,y

We next show that S spans U + W. Suppose v is
an arbitrary vector in U + W. Then there are vectors
u € U and w € W such that v = u 4+ w. Since
(e1,...,@;,U1,. .., Uy) isabasis for U there are scalars
a;,1 <i<1,bj,1 <j < msuchthat

u=a1x;+ -+ aqx;+biuy + -+ bptp,.

Since (x1,...,x;, wy,...,w,) is a basis for W there are
scalars ¢;, 1 < i <,dy,1 < k < n such that

w=cx+ - - +qx; +diw; +--- + d,w,.

But now we have

v=ut+w=
(a1 + -+ @@ +bius + - + bpu,)+
(1w + -+ @ + diwy + -+ + dpwy) =
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(a1 +c1)ey + -+ (a + )z +

b1u1 —+ o4 bmum + d1w1 =+ ... dnwn.

Thus, & spans U + W as required and S is a basis of
U + W. It follows that dim(U + W) =1 + m + n. Now

dim(U) +dim(W) = (I+m)+(I4+n) =2l+m+n =

I+ (+m+n)=dim({UnW)+dim(U+W).
7. Let (1, @2, x3) be a basis for X and (y1, y2,y3) be a
basis for Y. If X NY = {0} then (21, T2, 3, Y1, Y2, Y3)

is linearly independent by Exercise 11 of Section (1.5) .
But this contradicts dim (V') = 5. Thus, X NY # {0}.

8. Since U + W = V,dim(U + W) = dim(V) = n.
Making use of Exercise 8 we get

dim(UNW) = dim(V) — dim(U) — dim(W) =
n—k—(n—k)=0.

Since dim(UNW) =0,U N W = {0} as required.

9. Set

|$1, To,X3 € IF},

|£L'17.’172,{L'3,(E4 € F}a
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Z2

zs3

T |$17I2,$3,I4,x5 EIF}
4

Zs

Note that dim/(X) = 3,dim(Y") = 4,dim(Z) = 5.

a) Set
1 0 0
0 1 0
V1 = 0 Vo = 0 V3 = 1
0l’ 0]’ 0
0 0 0
0 0 0
1 0 1
0 1 1
-1 -1 1
Y=L ™27 o '™ o
0 0 0
0 0 0
b) Let vy, v, v3 be as in a) and now set
1 0 0
0 1 0
w1 = 0 wo = 0 w3 = 1
1]’ 1]’ 0
0 0 0
0 0 0

Note that Span(vy, v, v3) = X and that wy, wy, w3 ¢
X. Therefore Span(vy,vs,v3) # Span(wi,ws, ws).
On the other hand, v, ve, v3, w1, w2, w3 € Y. By the
argument of Exercise 2 we have

dim[Span(vy, va,v3) N Span(w, we, ws)] = 2.
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¢) Let vy, v2, v3 be as in a) and now set

w1 = , W3 =

OO~ O O O
SO = O O O O
O R R R OO

Set V. = Span(vi,ve,v3), W = Span(wi,ws, ws).
Since v1, V2, V3, W1, wa, w3 € Z,V+W C Z and there-
fore

dim(V + W) < dim(Z) =5 (1.2)

On the other hand, (v1, va, v3, w1, ws) is linearly inde-
pendent and therefore

dim(V 4+ W) >5 (1.3)
From Equation (1.2) and (1.3) we get
dim(V + W) =5.

Now use Exercise 6:

dim (V) + dim(W) = dim(V W) + dim(V + W)

Since dim(V) = dim(W) = 3 and dim(V + W) = 5
we conclude that dim(V N W) = 1 as required.

10. a) There are 8 non-zero vectors and any one can be
the first vector in a basis. Suppose we choose the vector v.
The second vector must be linearly independent and there-
fore not a multiple of v. There are 3 multiples: 0, v, —v.
So there are 9 - 3 = 6 choices for the second vector. Thus,
there are 8 x 6 = 48 bases.

b) There are 24 non-zero vectors and any can be the
first vector in a basis. Suppose we choose the vector
v. The second vector must be linearly independent and
therefore not a multiple of v. There are 5 multiples:
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0,v,2v, 3v,4v. So there are 25 - 5 = 20 choices for the
second vector. Thus, there are 24 x 20 = 480 bases.

¢) There are p?> — 1 non-zero vectors and any can be
the first vector in a basis. Suppose we choose the vec-
tor v. The second vector must be linearly independent
and therefore not a multiple of v. There are p multiples:
0,v,...,(p — 1)v. So there are p> — p choices for the
second vector. Thus, there are (p? — 1)(p? — p) bases.

11. Let dim(V) =nand dim(U) = k. If U = V we can
take W = {0} so we may assume k < n. Choose a basis
By = (ua,...,uy) for U. By part 1) of Theorem (1.24)
we can expand By to abasis, B = (uy, ..., u,) for V. Set

W = Span(wgy1, ..., uy,). Then W is a complement to

U.

12. If (vy,...,v5) C Wthen V = Span(vy,...,vg) C
Span(W) = W, a contradiction.

13. First assume that X N'Y = {0}. Let (z1,...,xx)

be basis for X and (y1,...,yx) a basis for Y. Set u; =
x; +y; and U = Span(uy,...,ug). Then X NU =
YNU=0and XU =Y PpU=XpY.Let Whbea
complementto X +Y inVandset Z =U @ W.

Assume X NY # {0} and let (v1,...,v;) be a basis for
XNY.Sets=k—jandlet (x1,...,x,) be asequence

of vectors from X such that (vy,...,vg, ®1,...,Ts)isa
basis of X and similarly let (y1,...,ys) be a sequence
of vectors from Y such that (uq,...,v;,¥1,...,0s)isa

basis for Y. Setu; = x; +y;,1 < i < sand U =
Span(uy,...,us). Then X NU =Y NU = {0} and
XeU=YadU=X+Y.Let W be acomplement to
X+YinVandsetZ=Ua®W.

1.7. Bases of Infinite
Dimensional Vector Spaces

1. First we show that {x,|r € X} is independent. If
not, then there must exist a finite subset {x,|1 < i < n}
which is dependent. There there are scalars, c¢; such that
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n
f = Z CiXx;
=1

is the zero function. In particular, for each ¢, f(x;) = 0.
However, f(z;) = ¢;. Thus, ¢; = -+ = ¢, = 0. Thus,
{xz|x € X} is linearly independent.

Now we need to show that {x,|r € X} spans. Let
f € Myin(X,F) be a non-zero function. Then spt(f)
is non-empty but finite. Suppose spt(f) = {z1,...,z,}.
Set ¢; = f(z;). Then the function f and Y|, ¢;X,, are
equal.

2. First of all suppose X is an n—dimensional vector
space over QQ say with basis (v1,...,v,). Then there
is a one-to-one set correspondence between V and Q",
ai
namely taking Z?:l a;v; to . Therefore the cardi-
an
nality of X is the same as the cardinality of Q™ which is
the same as the cardinality of Q.

Suppose B is a basis of R as a vector space over Q. Let
Ptin(B) be all the finite subsets of 5. Then

R = Upep;,,(8)ySpan(B).

As shown above, for any B € Py;,(B), the cardinality of
Span(B) is countable.

For an infinite set X the cardinality of the finite subsets
of X is the same as the cardinality of X. Also, if Y is an
infinite set and for each y € Y, .S, is a countable set then
Uyey Sy has cardinality no greater then Y. It now follows
that the cardinality of R is no greater than the cardinality
of B. Since B is a subset of R we conclude that B and R
have the same cardinality.

3. Choose a basis B;. This can be extended to a basis B
for V. Let W = Span(B\ Br). Then W is a complement
toUinV.

4. Let B be a basis for V. Choose a subset X,, of B
with cardinality n. Then U,, = Span(B \ X,,) satisfies
dim(V/U,) =n.
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1.8. Coordinate Vectors

la) Since dim(Fz[x]) is 3 and there are three vectors in
the sequence, by the half is good enough theorem it suf-
fices to show the vectors are linearly independent.

Thus, suppose c1, ca, c3 are scalars such that

c1(1+ ) 4 co(1 4+ 22) 4+ c3(1 4+ 22 — 222) = 0

After distributing and collecting terms we obtain

(c1 4 co +c3) + (e1 + 2¢3)x + (¢ — 2¢3)2? = 0

This gives rise to the homogeneous linear system

cp + c2 + C3 = 0
C1 + 2C3 + 0
co — 2c3 + 0

This system has only the trivial solution ¢; = ¢c3 = ¢35 =
0. Thus, the vectors are linearly independent as required.

1b) To compute [1]  we need to determine ¢y, ¢z, ¢3 such
that

(c1+ca+c3)+ (c1+2¢c3)x + (ca — 203)1‘2 =1

This gives rise to the linear system

cit + ¢ + ¢33 =1
1 + 2c3 =

Cy — 203 = 0

-2

which has the unique solution [1] 7 = . In a simi-

2

1
3 2
lar manner [z]7 = | —1 | and [22]F = (—1
-1 -1
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Clj

2. Setcj = | cg; | ,J =1,2,3. This means that

C3j
U; = C1;01 + C2;5V2 + C3;V3.

a1

If []g, = | a2 | then = aju1 + asus + azus.

as

It then follows that

T =a (011’01 + C21v2 + c3103)+
as(c12v1 + c22v2 + €32v3)+
az(c13v1 + 2302 + c33v3) =
(a1c11 + agciz + azciz)vi+
(a1c21 + agean + azcos)ve+

(a1c31 + agesz + ascess)vs.
Consequently, [x]g, =
aici1 + azciz + ascis

a1c21 + agco2 +asces | =
a1€31 + a2C32 + a3C3s

C11 C12 C31
ay [ co1 | +ag | co2 | tasg|cs2| =
C31 C32 €33

(a101 “+ asco + agcg)

3a) For ¢ = 0,1,2,3 we have f;(i) = 1if¢ = jand 0
otherwise. We claim that implies that (f1, f2, f3, f4) is
linearly independent. For suppose ¢ f1 + co fo + c3fs +
c4 f4 is the zero function. Substituting ¢ withi = 0,1, 2,3
we get 0 = ¢;4+1. Thus, all the ¢; = 0. Now since there
are 4 vectors and dim(Rs[x]) = 4 it follows that F is a
basis for Rs|[x].

b) Suppose g = lel + 62f2 + Cgfg + C4f4. Then g(’L) =
1 fi(i) + e f2(i) + ¢ f3(i) + cafa(i) = i1 as required.
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1 0 0
1 1 1
4. [1].7: = 1 7[$].7: = 9 [(L‘2]]—‘ = 4 7[x3]f =

1 3 9

0

1

8

27

5. Assume that Span(uq,...,u;) = V and that ¢ € F™.
Let ¢ € V be the vector such that [z]z = ¢. By hypoth-
esis ¢ € Span(uq,...,ux). By Theorem (1.29), c is a

linear combination of ([u1]g, [uz]g, ..., [uk]s), equiva-
lently, ¢ € Span([u1]g, [u2]s, - -, [ur]B).

Conversely, assume that Span([ui]g, ..., [ug]s) = F*
and that x € V. Let ¢ = [z]g. By hypothesis, ¢ is a
linear combination of ([u1]3, [u2]s, - - ., [ug]s). Then by
Theorem (1.29) it follows that « is a linear combination
of (ul,u2, ceey uk)

6. This follows from Exercise 5 and the half is good
enough theorem.
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Chapter 2

Linear Transformations

2.1. Introduction to Linear
Transformations

1 0 0
1. Sete; = |0|,ea = [1],es = | 0], so that
0 0 1

(e1, €2, e3) is a basis of F2. Then T'(ae; + bey + ces) =
a(l+z+22) +b(1 — 22) + (=2 — 2?).

By Theorem (2.5) it follows that 7" is a linear transforma-
tion.

2. We show the additive property is violated:

1 0 0 0 0
T =T = . It should th h
(O 0) (0 1) <O) t should then be the
case that T’ <(1] (1)) = (8 8) . However, T' <(1) (1)) =
1 0
0 0/)°
1 0 2 -3
3.T(a0+b1):a0+b 0
4 5
Theorem (2.5) it follows that 7" is a linear transformation.
4.
1 T2 Ty + T2
(<y1> (yz)) (ZJ1+Z/2)
€x1+x2 eT1et2
<6y1+y2) = (€y18y2> =

. Now by
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() + (o) =7 () -7 ()
et ev2 Y1 y2
T cx e
T = T = =
(=)= (=)
e\ [e"\ x
((ey)c =c )= cTr y)
5. Let uj,us € U,cy,co € F. Then (T o S)(cru; +
cotty) = T(S(c1uy + cous)). Since S is a linear trans-

formation S(ciju1 +caus) = ¢15(wy) +c25(us). It then
follows that

T(S(c1u1 + couz)) = T(c1S(ur) + c2S(uz)).

Since T is a linear transformation

T(clS(ul) + CQS(UQ)) = clT(S(ul)) + CQT(S(’LLQ)) =

c1(T o S)(ur) + co(T 0 S)(u2).
It now follows that T" o S is a linear transformation.

6. Let v1,vy € V. Then by the definition of S + T we
have

(S + T)(’Ul + ’U2) = S(’Ul + ’Ug) + T(’Ul + ’Ug)

Since S, T are linear transformations
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We then have

S(vy +v2) + T(v1 +v2) =
[S(v1) + S(v2)] + [T'(v1) + T'(v2)]
[S(v1) + T(v1)] + [S(v2) + T'(v2)]

(S+T)(v1) + (S +T)(v2).

Now let v € V, ¢ € F. Then by the definition of S + T’
(S +T)(cv) = S(cv) + T (cv)

Since S, T are linear we have S(cv) = ¢S(v),T(cv) =
cT'(v). Then

S(cv) + T(cv) = cS(v) + cT'(v) =
c[S(v) + T(v)] = ¢[(S + T)(v)].

7. Letv € V and write v =  + y where * € X and
yey.

a) Pi(v) = « and P;(x) = z. Consequently, P, o
Py (v) = Pi(v). In exactly the same way, Py o Py = Ps.

b) Now (P + P2)(v) = Pi(v) + Po(v) =z +y =wv
and therefore P; 4+ P is the identity transformation of V.

¢) Note that P;(y) = P2(x) = 0. In now follows that
(Py o Py)(v) = Pi(P2(v)) = Pi(y) = 0 and therefore
Py o Py = 0Oy. In a similar fashion P, o P; = Oy .

8. By Exercise 6, P, + Po = Iy. ThenT = Iy o T =
(Pr+Py)oT = (ProT)+ (PaoT). Since Py o T
and P, o T are linear transformations, by Lemma (2.2)
T =(PioT)+ (P, oT) is alinear transformation.

9. Let v € V be an arbitrary vector and set x =
Py (v),y = P,(v). Thenx € X,y € Ysox +y €
X + Y. By hypothesis, P, + P» = Iy and therefore
v = (P + P)w) = P(v)+ P(v) =z+y. Asv
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is arbitrary we conclude that V' = X + Y. On the other
hand, assume v € X NY. Since v € Y, P»(v) = v. Since
v € X, Pi(v) = v. It then follows that (P, o P;)(v) =
Py (P2(v)) = Py (v) = v. However, we are assuming that
Py o P, = Oy and therefore v = (P o P2)(v) = 0. Thus,
XnY ={0}.

10. Let B = (v, ..., v,) be a basis for V. Now T'(B) =
(T(v1),...,T(vy)) is a sequence of n vectors in W and
dim(W) = m < n. By the Exchange theorem there are

scalars ¢y, . . ., ¢,, not all zero, such that

aT(v)+ -+ cenT(vn) =Ow.

Since T’ is a linear transformation

al(vy)+ -+, T(v,) =T(c1v1 + ... cpvy).

Since not all ¢q, ¢z ..., ¢, are zero and (vq,...,v,) is a
basis, the vector v = ¢1v; + ... ¢, v, # Oy and satisfies
T(’U) = Ow.

1. Tl(vy +v2) = (v1 +v2) + W = (v1 + W) + (v2 +
W) = H(Ul)+H(U2).

II(cv) = (cv) + W = c(v + W) = cll(v).

12. If w; € R(T) then there is a vector v; € V such
that T'(v;) = w;. Now let w € W be arbitrary. Since
(wy,...,wy,) is a spanning sequence for W there are
scalars c1, . . ., ¢, such that

w=cwi+...cuw, =cT(v))+...cpT(vn).

Setv = cyv1 + ... ¢V, Since T is a linear transforma-
tion

T(w)=T(c1v1 + -+ cpom) =
aT(v)+ ..., T (o) =

ciwy +...cpw, =w.

Since w is arbitrary this proves that R(T") = W.
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13. Since each T'(v;) € R(T) and R(T) is a subspace of
W it follows that Span(vy,...,v,) C R(T) so we have
to prove the reverse inclusion.

Assume w € R(T). Then there exists v € V such that
T(v) = w. Since (v1,...,v,) is a basis for V there are
scalars ¢y, ..., c, such that v = c;vy1 + - - - + ¢, v,. Then

w=Tw)=T(crv1 + -+ cpvy,) =
ClT('Ul) + -+ CnT('Un)

The last equality follows from Lemma (2.1). Clearly,
aT(v)+- -+ T(vy)isin Span(T(v1), ..., T(v,))
which completes the proof.

14. LetT : V — W be a linear transformation. Let
T(vj) = ajjwr + -+ + Qmjw,,. Consider the linear
transformation

S = Z aijEij.
.7

Claim that S = T. Towards this end it suffices to prove
that S(v;) = T'(v;) for all j. Now since E;;(v;) = Ow
for k # j we have

S(vj) = ZaijEij(vj) =

n
E A jW; = AW + +++ F QWi = T('Uj)
=1

as required.

On the other hand, suppose S = 21 ; @ijEij is the zero
function from V' to W which takes every vector of V
to the zero vector of W. In particular, S(v;) = Ow.
Thus, S(v;) = 3% @i Eij(v;) = 3200 ajw; = Ow.
However, since (wq,...,w,,) is a basis of W we must
have a;; = --- = a,,; = 0. Since this holds for every
J,1 < j < n we have all a;; = 0 and the E;; are
linearly independent. With what we have proved above,
(E117E21, e 7Em17 Elg, ey E»mg, ey Elna ey E’mn)
is a basis for L(V,W). It now follows that
dim(L(V,W)) = mn.
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15. Let X consist of all pairs (A, ¢) where A C B, ¢ is a
linear transformation from Span (A to W and ¢ restricted
to A is equal to f restricted to A. Order X as follows:
(A, ¢) < (A, ¢) if and only if A C A" and ¢’ restricted
to Span(A) is equal to ¢. We prove that every chain has
an upper bound.

Thus, assume that C = {(A;, ¢;)|¢ € I} is a chainin X.
Set A = U;erA;. Define ¢ as follows: If v € Span(A;)
then ¢(v) = ¢;(v). We need to show this is well defined.
Suppose v € Span(A;) N Span(A;) fori,5 € I. Since
C is a chain either A; C A; or A; C A;. Assume A; C
A;. Also, since C is a chain, ¢; restricted to A; is ¢;. It
then follows that ¢;(v) = ¢;(v) since ¢;, ¢; are linear
transformations.

Now by Zorn’s lemma there exists a maximal element
(A, ¢). We need to show that A = 5. Suppose to the con-
trary that A # Bandletv € B\ Aandset A’ = AU{v}.
Define ¢’ : Span(A)DdSpan(v) as follows: ¢’ (x+cv) =
¢(x) = cf(v). Then ¢’ is linear and ¢’ restricted to A’
is equal to f restricted to f. So, (A’,¢’) € X which con-
tradicts the maximality of (A, ¢). Therefore A = B as
claimed.

16. Letcy, ..., c be scalars such that c;v1 +- - - +cpvp =
0y . We need to show that ¢c; = --- = ¢ = 0. Applying
T we get

T(cl'ul —+ -+ ckvk) = T(Ov) = 0w .

By Lemma (2.1)

T(civy + -+ cpog) =

aT(v))+ -+ T (vg) =crwy + -+ + cpwg.

Since (wy, . .., wy) is assumed to be linearly independent
we have ¢; = -+ - = ¢, = 0 as required.
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2.2. Range and Kernel of a
Linear Transformation

1. There are three vectors in the basis for R(7") and there-
fore rank(T") = 3. Since dim(M23(R) = 6 applying the
rank-nullity theorem we get

rank(T) + nullity(T) = dim(Ma3(R))

3+ nullity(T) =6

Thus, nullity(T) = 3.

2. Ker(T) = Span((x — a)(z — b),xz(z — a)(x — b)).
The nullity of T is 2. Since dim(Fs[z]) = 4 by the
rank-nullity theorem we have dim(Ker(T)) = 2. We can

1
see that later directly by noting that T(%:g) = (0> and

3. T(a+ bx + cx?® + da3) =

1 2 0 2
1 3 1 1
a 1 +b 1 +c 1 +d 1
1 2 0 2
It follows that
1 2 0 2
1 3 1 1
R(T)_Span( 1 ) 1 9 _1 9 1 )
1 2 0 2

The first, second and fourth vectors are a basis for this
subspace:

R(T') = Span(

— = =
O O~ W N
O = = N
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Ker(T) = Span(2 — z + 2?),rank(T) = 3, and
nullity(T) = 1.

4. An arbitrary vector a + bx + cz? € Fy[z] is the im-
age of <a 8) . This proves that T is surjective. 1" can-
c

not be an isomorphism since dim(Mao(F)) = 4 > 3 =
dim(Fy[z]).

5. The only solution to the linear system

a + b = 0
a — 2b — 2¢ = 0

b + ¢ =0
a + 2b + ¢ = 0

is the trivial one ¢ = b = ¢ = 0. Therefore Ker(T) =
0

{1 0| } which implies that T" is one-to-one. On the other
0

hand, since dim(F3) = 3 and dim(Maz(F)) = 4, the

spaces cannot be isomorphic.

1 -1 1
6. R(T) = Span([1], 1 ],[1]) = F3. Thus,
1 2 4
T is surjective. By the half is good enough theorem for
transformations, 7" is an isomorphism.

7. Let w € W be arbitrary. Since T is onto there exists
an element v € V such that T(v) = w. Since S is onto
there exists and element « € U such that S(u) = v. Then
(ToS)(u) =T(S(u)) = T(v) = w. We have thus shown
the existence of an element v € U such that (T'0 S)(u) =
w. This proves that T" o S is surjective.

8. Suppose that (7' o S)(u) = (T o S)(v'). Then
T(S(u)) = T(S(w')). Since T is one-to-one this implies
that S(u) = S(u'). Since S is on-to-one we have u = u/'.
Thus, T" o S is one-to-one.

9. By Exercises 7 and 8 it follows that if S, ¢ are isomor-
phisms then T" o S'is a bijective function. By Exercise 5
of Section (2.1), T' o S is a linear transformation. Thus,
T o S is an isomorphism.
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10. Let By = (v1,...,v,) be a basis of V and set
w; = T(v;). Since T is injective and By is linearly
independent By = (ws,...,w,) is linearly indepen-
dent by Theorem (2.11). Since V and W are isomor-
phic, dim(W) = dim(V) = n so that by the half is
good enough theorem, Byy is a basis for W. Now there
exists a unique linear transformation S : W — V such
S(w;) = v;. Note that S o T' is a linear operator on V'
such that (S o T')(v;) = v; for all j. It then follows that
S oT = Iy and hence S = T~!. This proves that 7! is
a linear transformation.

Alternative proof (applies even when V' is infinite dimen-
sional): Assume wi,ws € W. We need to show that
T_l(wl —I—U)Q) = T_l(w1)+T(w2). Setv; = T_1<’w1)
and vo = T~ !(w-). Just as a reminder, v;,7 = 1,2 is the
unique element of V' such that T'(v;) = w;. Since T is
linear, T'(vy 4+ v2) = T'(v1) + T(v2) = wi + wa. There-
fore T (w; +wsy) = v1 + vy = T (wy) + T (wo).

Now assume that w € W and ¢ € F. We need to show
that 77! (cw) = T~ (w). Set v = T~!(w). Since T is
linear T'(cv) = ¢T'(v) = cw. We may therefore conclude
that 771 (cw) = cv = T~ (w).

11. Let By = (v1,...,v,) be a basis for V. We know
that R(T) = Span(T(v1),...,T(vy)). Now let By =
(wy,...,w,,) be a basis for . By the exchange theo-
rem, dim(V) =n > m = dim(W).

12. Let By = (v1,...,v,) be a basis for V and By, =
(wy,...,w,,) be a basis for W. Since T is injective by
Theorem (2.11), T (By) = (T(v1),...,T(vy,)) is lin-
early independent. By the exchange theorem, dim (V') =
n < m = dim(W).

13. Let By = (wy, ..., w,,) be a basis for W. Since T
is surjective, for each 7 = 1,...,m there exists a vector
v; such that T'(v;) = w;. By Theorem (2.6) there exists
a unique linear transformation S : W — V such that
S(w;) = v;. Now T o S : W — W is linear transforma-
tion and (T o S)(w;) = T(S(w;)) = T(v;) = w;. Since
T o S is a linear transformation and the identity when re-
stricted to a basis of W it follows that T'o S' = Iy, . (Note:
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If S is not one-to-one then there will be other choices of
(v1,...,v,,) and therefore T will not be unique).

14. If dim(V') = dim(W) then T is an isomorphism by
the half is good enough theorem for linear transformations
and then 7" has a unique inverse (as a map) which is linear

by Exercise 10. Therefore by Exercise 12 we may assume
that dim (V') < dim(W).

Let By = (vi1,...,v,) be a basis of V. Set w; =

T(v;),i = 1,...,n. Since T is one-to-one the sequence
(w1,...,w,) is linearly independent. We can then ex-
tend (w1, ..., w,) to a basis (w1, ..., w,,) for W. Now

there exists a unique linear transformation S : W — V'
such that S(w;) = v; for i < n and S(w;) = 0y for
1> n.

SoT :V — Vis a linear transformation. Moreover,
(SoT)(v;) = S(T(v;)) = S(w;) = v;. It then follows
that SoT = Iy.

15. To show R is well-defined we need to prove if
Ty (v) = T (V') then Ta(v) = T (v'). If Ty (v) = Ty (v')
then T'(v — v') = 0, thatis, v — v’ € Ker(T}). Since by
hypothesis, Ker(T1) = Ker(T),v — v’ € Ker(T5).
Consequently, To(v — v’) = 0. It then follows that
Ta(v) — To(v’) = 0 and therefore Th(v) = Ta(v') as
desired.

Now suppose w1, us € R(T7) and ¢q, co are scalars. We
need to show that S(c;u1 +cous) = ¢1.5(uy)+c25(u2).
Toward that end, let v1,v2 € V such that Ty (vy) =
ul,Tl (’Ug) = U2. Then T1(01’01 + Cg’vg) = ClTl ('Ul

T>(c1v1 + cov2). Since Ty is linear, Th(c1v1 + cov
cng(vl) + 02T2('U2) = Cls(Tl(Ul)) + C2S(T1('U2
clS(ul) + CQS('UQ).

~— N

16. Suppose first that Ker(T') = {0}. Then T is injec-
tive and by the half is good enough theorem an isomor-
phism. Since the composition of injective functions is in-
jective, T" is also injective for all k& € N. In particular, 7"
and 7" and consequently, Ker(T™) = Ker(T"!) =
{0}. Moreover, T™ and T™ ! are surjective and therefore
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Range(T™) = Range(T™') = V. Therefore we may
assume that 7" is not injective.

Let m be a natural number and suppose v € Ket(T™).
Then T"*'(v) = T(I™(w)) = T(0) = O.
Thus, Ker(T™) C Ker(T™*t1). Next, assume w €
Range(T™"1). Then there is a vector € V such that
w = T (z) = T™(T(x)) € Range(T™). Thus,
Range(T™*1) C Range(T™).

It follows that nullity(T™*') > nullity(T™) and
rank(T™t) < rank(T™). Consider the sequence of
(nullity(T), nullity(T?), ..., nullity(T™)).
Each is a natural number between 1 and n. If they are
all distinct they are then decreasing and we must have
nullity(T™) = n, that is, T" is the zero map. But then
T+ is also the zero map and in this case T" = T"+!.

numbers

In the case that they are not all distinct we must have
some m < n such that nullity(T™) = nullity(T™*1),
so that Ker(T™) = Ker(T™%1). It then follows that
Ker(T*) = Ker(T™) for all k > m. In particular,
Ker(T™) = Ker(T") = Ker(T™"!). By Theorem
(2.9) it then follows that rank(T™) = rank(T™1).
Since Range(T"*1) C Range(T™) we conclude that
Range(T™*1) = Range(T™).

17.  Since dim(Range(T™)) + dim(Ker(T™)) =
dim(V) it suffices to prove that Range(T™) N

Ker(T™) = {0}. From the proof of Exercise 16,
Ker(T*) = Ker(T™) and Range(T*) = Range(T™)
for all kK > n. Set S = T"™. Tt then follows that

Ker(S?) = Ker(S) and Range(S?) = Range(S). So,
assume that v € Ker(S) N Range(S). Then v = S(w)
for some w € V. Now S?(w) = S(v) = 0 since v €
Ker(S). Thus, w € Ker(S?), whence w € Ker(S).
Thus, v = S(w) = 0 as required.

18. This follows immediately from Theorem (2.7) and
the fact, established in the proof of Exercise 16 that
Range(T?) C Range(T) and Ker(T) C Ker(T?).

19. a) Since T'S = 0y v it follows that Range(S) C
Ker(T) from which we conclude that rank(S) <
nullity(T) = n — k.
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b) Let (v1,...,v,_) be a basis for Ker(T) and extend
to a basis (v1,...,v,) of V. There exists a unique op-
erator S such that S(v;) = v; if 1 < i < n —k and
S(v;) = 0ifi > n — k. Then Range(S) = Ker(T) so
that rank(S) =n—kand TS = Oy, v.

20. a) Since ST = Oy _,y it follows that Range(T) C
Ker(S). Consequently, nullity(S) = dim(Ker(S)) >
dim(Range(T)) = rank(T) = k. It then follows that
rank(S) <n —k.

b) Let (vy,. .., v) be abasis for Range(T') and extend to
a basis (v1,...,v,). Let S be the unique linear operator
such that S(v;) = 0if 1 < 4 < k and S(v;) = wv; if
i > k. Then Range(S) = Span(vii1,...,v,) so that
rank(S) = n — k. Since Range(T) C Ker(S),ST =
Oy_v.

21. Let dim(V) = n. Since T? = Oy _,y it follows
that Range(T) C Ker(T) whence rank(T) = k <
nullity(T) = n — k. Tt then follows that 2k < n so
that k < %

22. Let T be the unique linear operator such that T'(v;) =
Vigm ifl <i<mandT(v;) =0ifm+1<i<n.

2.3. Correspondence and
Isomorphism Theorems

1. By the Theorem (2.19) we have

VIW = (Xi +W)/W =X, /(X1 nW)

V/W = (Xa+ W)W = Xo/(XoN W)

Thus, X1 /(X; N W) = Xy /(X N W).

2. IfV = X;®W then by Theorem (2.19) V/W = (X;+
W)W = X1 /(X1 NW) = X; since X1 N W = {0}.
Similarly, V/W = X,. Thus, X; & Xo.
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3. Since f is not the zero map, by Theorem (2.17) it fol-
lows that V//Ker(f) 2 Range(f). Since f is not the zero
map, f must be surjective, that is, Range(f) = F.

4. Letw € U. Then T'(u) = w which implies that S(u) =
(T - Iv)(’u,) =0.

Now assume that v € V is arbitrary. Since T'(v + U) =
v+ U it follows that S(v) = (T — Iy )(v) = T(v) —v €
U. Then S?(v) = S(S(v)) = 0.

5 a) Assume T'(v) = v. Then (S + Iy )(v) = S(v) +
Iy (v) = S(v) + v = v and therefore S(v) = . Con-
versely, if v € Ker(S) then T'(v) = (S + Iy)(v) =
Sw)+Iy(v) =0+v=w.

b) Let v € V. Then

T(v) — v = T(v) = Iy (v) = (T — Iy)(v) = S(v).

Since S? is the zero map, S(v) € Ker(S) = U. There-
fore T'(v) — v € U which is equivalent to T'(v + U) =
v+ U.

6. DefineamapT: UV — (U/X) & (V/Y) by

T(u,v)=(u+X,v+Y).

This map is surjective and has kernel X @Y. By Theorem
217 (U V)/(X &Y) isisomorphic to U/X & V.

7 a.) Need to show that I' is closed under addition and
scalar multiplication. Suppose v, w € V. Then (v, T(v))
and (w, T (w)) are two typical elements of I'. Since T is
linear

(v, T(v)) + (w+ T(w)) = (v+w,T(v) + T(w)) =

(v+w,T(v+w)).

b) The subspace V; = {(v,0)|v € V} is a complement
to'in V & V and isomorphic to V. It then follows from
Theorem (2.19) that

VIE=W+D)/T=V/(VinT)=V
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the last equality since V1 NT' = {0}.

8. Since U + W is a subspace of V, (U + W)/W is a
subspace of V/W. By hypothesis, dim(V/W) = n and
therefore dim((U + W)/W) < n.

By Theorem (2.19)
U+W)/W=2U/(UNW).

We therefore conclude that dim(U/(U N W) < n.
Now by Theorem (2.18)

(V/(UNW)/(U)(UNW) = V/U.
Thus, dim(V/(U N W))/(U/(U N W) = dim(V/U) =

m. It now follows that dim(V/(VNW)) < dim(U/(UN
W)+ dim(V/U) < m+n.

2.4. Matrix of a Linear
Transformation

1. Assume T is onto. It follows from Exercise
13 of Section (2.1) that Span(T(vi),...,T(v,)) =
W. By Exercise 5 of Section (1.8) it follows that
Span([T(v1)|Bw - - -+ [T (vn)]Bw ) = F™. However, the
coordinate vectors [T'(v;)]gy,,J = 1,...,n are just the
columns of A.

Conversely, assume the columns of A span F™. Then
([T(v1)]Bws - - -5 [T(vn)]By ) spans F™. By Exericise 1
it follows that (T'(v1),...,T(v,)) spans W.

2. Assume T is injective. Then by Theorem (2.11)
(T(v1),...,T(vy)) is linearly independent. — Then
by Theorem (1.30) ([T(v1)]Bw,---, [T (vn)]Bw)
is  linearly  independent in  [F"”.  However,
([T(v)]Bws - - - » [T(vn)]By ) is the sequence of columns
of the matrix A.

Conversely, assume that the sequence of columns
of the matrix A is linearly independent in F™.
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By definition of the matrix A this means that
([T(v)]Bws---» [T(vn)]By ) is linearly independent
in F”. By Theorem (1.30) we can conclude that
(T'(v1),...,T(vy,)) is linearly independent in W. Finally,
since By = (v1,...,v,) is a basis for V, by Theorem
(2.11), it follows that 7' is injective.

. 1\ .
3. The matrix A = (8 O) is non-zero but A% = 0gy5.
Let T be the operator on R? such that with respect to the
. 1 0\, . .
standard basis ( ( O) , ( 1)) it has matrix A. Thus,

z Y
T = .
(<y>) <0)
4. There are lots of examples. Here is one possible pair:

am= o) (4 A

2 2 1
5. Mp(S,8) =11 0
100

6. Let S,, be the standard basis of F™ and S,,, be the stan-
dard basis of F™. Set A = M (S, Si). Then for any
vector v € F", T'(v) = Aw.

7. Let T € L(F",F™) such that A = M7 (S, Sm).
Since the columns of A span F"™ by Exercise 1 T is sur-
jective. By Exercise 13 of Section (2.2) there is an lin-
ear transformation S : F™ — F" such that T'S = Igm.
Let B = Mg(S8™,8™). It then follows that BA =
Mg (8™, 8™) = Iy,

8. Let T € L(F",F™) such that A = Mp(S",8™).
Since the sequence of columns of A is linearly indepen-
dent, by Exercise 2 the operator 7 is injective. Then by
Exercise 14 of Section (2.2) there is linear transforma-
tion S : F™ — [F" such that TS = Ign. Set B =
Mg(8™,8™). Then AB = Mp, (8", 8™) = I,,.

1 0 3 0
9. The reduced echelon formof Ais [0 1 -2 0
00 0 1

Since every row is non-zero the columns of A span Q3.
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4 -2 -1
-5 3 2
(@) h matrix i
ne such matrix is 0 0 0
2 -1 -1
1 0 0
. 01 0
10. The reduced echelon form of A is 00 1
0 0 O

Since the columns of this matrix are linearly independent
the columns of A are linearly independent.

2 -1 -2 0
One such matrixis | —1 0 1 0
o -1 1 0

11. Since A = My (By, Bw) it follows that [T'(v)]s,, =
Alv]g,. Suppose v € Ker(T) so that T'(v) = Ow
Thus A[v]g,, = 0 from which we conclude that [v]g,,
null(A). On the other hand if [v]g, € null(A) t h
[T(v)]B,, = 0 from which we conclude that T'(v) = Oy
andv € Ker(T).

2.5. The Algebra of L(V, W)
and M,,,(F)

1 1 1 0
1.Let A = (0 1) ,B= <1 1). Then
2 1 11
a= (2 Nosas (1))
Now let (v;,v2) be linearly independent in V' and xtend
to a basis B = (vy,...,v,) for V. Let S be the linear

operator on V such that S(vy) = vy, S(v2) = v + vs
and for S(v;) = v; for3 <i < n.

Let T be the linear operator on V' such that T'(vy) = v1 +
v9, T(vy) =wvoand T'(v;) = v; for 3 <i < n.

Then (ST)(v1) = S(T(v1)) = S(v1 + v2) = S(v1) +
S(’Ug) =v + (’Ul + ’UQ) = 2’01 + V2.

(T'S)(v1) = T(S(v1)) = T(v1) = vi+v2 # (ST)(v1).
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2. Let (v1,v2) be linearly independent and extend to a
basis B = (vy,...,v,) for V. Let S be the operator on
V such that S(v1) = v1 + v2,S5(v2) = v1 + vy and
S(v;) =0y for3 < i <mn.

Let T be the operator on V' such that T'(vy) = v, —
v9, T(v3) = v — v and T'(v;) = Oy for 3 <i < n.

If v € B\ {v1,v2} then (ST)(v) = S(T(v)) = S(0) =
0. On the other hand

(8T)(v1) = S(T'(v1)) = S(v1 —v2) =
S(v1) — S(v2) = (v1 +v2) — (v1 +v2) = 0.

(ST)(’UQ) = S(T(’Ug)) = S(’Ul — ’UQ) =0.

3. Since la = al the identity of A is in C4(a) and so
C(a) has an identity. We need to show that C'4(a) is
closed under addition, multiplication and scalar multipli-
cation.

Suppose b,c € Cy(a). Then (b + c)a = ba + ca =
ab+ac=a(b+c).Sob+ce Cyla).

We also have (bc)a = b(ca) = b(ac) = (ba)ec =
(ab)e = a(be) and so be € Ca(a). Finally, if d is a
scalar we have (db)c = d(ba) = d(ab) = a(db).

4. We prove the only non-zero ideal in M,,,(F) is
M, (). Suppose J is an ideal and A is a matrix with
entries a;; is in J and A is not the zero matrix. Then
for some a;; # 0. Let E;; be the matrix with zeros in
all entries except the (i,7)—entry which is a 1. The ma-
trix By AEj; = a;;E;; is in J since J is an ideal. Since
a;; # 0 we can multiply by the reciprocal and therefore
El'j e J.

Now let Pi; be the matrix which is obtained from the
identity matrix by exchanging the &k and [ columns (rows).
If B is an n X n matrix then P; B the matrix obtained
from B by exchanging the k£ and [ rows and BPy; is
the matrix obtained from B by exchanging the k and [
columns. It then follows that P, E;; Pj; = Ej is in J.
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However, the matrices Fy; span M, (FF) and it follows
that J = M,,,,(F). Since M,,,,(F) and L(V,V) are iso-
morphic as algebras the only ideals in £(V, V') are the
zero ideal and all of L(V, V).

5. Clearly the sum of two upper triangular matrices is
upper triangular. Consider the product of two upper tri-
angular matrices A and B. The (4, j)—entry of AB is the
dot product of the i*" row of A with the ;%" for of B:

If i > j then the product is zero and AB is upper triangu-
lar.

6. U, (F) is a subspace. We need only need to show that
the diagonal elements of a product of a strict upper trian-
gular matrix and a triangular matrix are zero. Suppose A
is strictly upper triangular and B is upper triangular. Then
the (i,7)—entry of AB is

(O ... 0 Q41,441 - -- ain)

Similarly the diagonal entries of B A are zero.

7. Assume T € L(V,V) is not a unit. Then T is
not injective by the half is good enough theorem and
Ker(T) # {0}. Let v be a non-zero vector in Ker(T).
Choose a basis (v1, . . ., v, ) and let S be the operator such
that S(v;) = v for all 4. Then S is not the zero operator
but Range(S) = Span(v). It then follows that T'S is the
Zero operator.
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2.6. Invertible Transformations
and Matrices

4 ) 2
.| 2 3 1
-1 -1 -1

2. S YHa+bx+cx?) = (b—c)+ (2a — b)x + (—3a +
b+c)z?.

3. Set w; = T'(v;). Assume that (w1, ..., w,) is a basis
for W. Then there exists a unique linear transformation
S : W — V such that S(w;) = v;. Then ST (v;) =
v; and since ST is linear, ST = Iy . Similarly, T'S =
Iy . So in this case T is an isomorphism. On the other
hand, assume 7T is an isomorphism. Then T is injective
and so (w1, ..., w,) is linearly independent. Also, T is
surjective. However, Range(T) = Span(ws, ..., wy).
Thus, (w1, ..., w,) is a basis of W.

4. This follows from Exercise 3.

5. From Exercise 4 we need to count the number of bases
(v1,v2, v3) there are in 3. There are 7 non-zero vectors
and v; can be any of these vectors. vy can be any vector
except 0 and v; and so there are 8 - 2 = 6 choices for vs.
Having chosen vy, v2 we can choose v3 to be any vector
not in Span(vi,ve) = {0, vy, v2,v1 +va}. So, there are
8 - 4 = 4 choices for v3. So the number of bases is

7x6x4=168.

6. From Exercise 4 we need to count the number of bases
(v1,v2,v3) there are in 3. There are 26 non-zero vec-
tors and v; can be any of these vectors. v, can be any
vector except 0 and +wv; and so there are 27 - 3 = 24
choices for ve. Having chosen v, v we can choose vs
to be any vector not in Span (v, vs). There are 9 vectors
in span(v1,v2) and so there are 27 - 9 = 18 choices for
v3. So the number of bases is

26 x 24 x 18 = 11232 = 2°3%13.
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7. This is the same as Exercise 7 of Section (2.5).
8. Assume S, T are invertible operators on the space V.

Then

(STN (T 'S 1) =S[T(T 'S 1)) =

(T71S~1)(ST) =TS~ H(ST)] =
T HS'OT) =T HIyT) =TT = Iy.

~

9. By the distributive property, S is an operator on
L(V,V).LetT € L(V,V). Then

—

S—18(T) =5 Y(ST) = (S')T =1, T =T

SS1T = §(S~'T) = (SS YT = IyT =T.

So S is an invertible operator with inverse S—1.

IO.IV—S)(IV+S+...+Sk—1):
IV+S++Sk_1—(S++Sk—1+Sk):

Iy — S*F =1Iy.
A similar calculation gives
(Iy +S+--+ 8Ny - 8) =1Iy.
11. Every operator T is similar to itself via the identity:

IyTI, L — T Therefore the relation is reflexive.

Assume the operators S and T are similar via @), that is,
T=QSQ 1. ThenS =Q 'TQ=Q 'T(Q"*)~!. So,
setting P = Q! we have S = PTP~!. The relation of
similarity is symmetric.

Assume S = QRQ ' and T = PSP~!. Then
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T=PQRQ™)P' = (PQRQ'P) =

(PQ)R(PQ)™
which implies that similarity is a transitive relation.

12. Suppose T» = QT1Q . Then

M, (B,B) = Mg (B, B)Mr,(B,B)Mgy-1(B,B).
Set A = Mq(B, B) then Mg-1(B, B) = A~*. Thus,

Mo, (B, B) = AMq, (B, B)A~"

and so the matrices are similar.

13. We are assuming there is an invertible matrix A such
that M, (B, B) = AMr, (B, B)A~. Let Q be the oper-
ator on V' such that the matrix of () with respect to B is

A
Mq(B,B) = A.

Let 7" = QT1Q'. Then

M(B, B) = Mo(B, B)Mr, (B, B)Mq-: (B, B)

= Mg (B, B)M7, (B, B)yMq(B,B)~*

AMz, (B,B)A™! = M, (B, B)

It follows that T/ = Ty and since T' = QT1Q ', T, and
T, are similar.

14.  Mp,(B,B) is similar to My, (B’,B’). Since
M, (B, B) is similar to M, (B’, B’) by hypothesis, by
transitivity, Mr, (B, B) and Br, (B, B) are similar. Now
by Exercise 13, T} and T5 are similar operators.
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Chapter 3

Polynomials

3.1. The Algebra of
Polynomials

1. 2% + 1.

2. Assume F(x),G(x) are in J. Then there are
a;(x),b;(X),i = 1,2 such that

=
=
I

ar(z) f(x) + b1 (x)g(x),
G(x) = ag(2)f(x) + ba(2)g ().

Then

F(z)+G(z) =
[a1(z) + ag(2)]f (2) + [b1(z) + ba(2)]9(2) € J

3. Assume F'(z) € J and ¢(z) € Flx]. We need to show
c(xz)F(x) € J. Now there are a(z), b(z) € F[z] such that
F(z) = a(z)f(x) + b(x)g(z). Then

4. Suppose d(x) is monic and has least degree in J.
Want to show that every element of J is a multiple of
d(x). Let f(x) € J. Apply the division algorithm to write
f(x) = q(z)d(xz) + r(x) where either r(z) is the zero
polynomial or deg(r(z)) < deg(d(z)). Suppose to the
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contrary that r(x) # 0. Then r(z) = f(z) — q(z)d(z).
By the definition of an ideal —g(z)d(x) € J. Since
f(x), —q(z)d(z) € J we getr(z) = f(x) — q(x)d(x) €
J. However deg(r(x)) < deg(d(x)) which contradicts
the minimality of the degree of d(x). So, r(x) is the zero
polynomial and d(x) divides f(x).

Now suppose d(z),d’(x) are both minimal degree and
monic. Then d(x) divides d’(z) and d'(x) divides d(z).
This implies there is a scalar ¢ € F such that d’'(z) =
cd(x). Since both are monic, ¢ = 1 and they are equal.

5. Let a(x) and b(z) be polynomials such that a(z) f(z)+
b(x)g(z) = d(x). We then have

a(z)f'(z)d(z) + b(x)g' (z)d(z) = d()

a(x) f'(x) + b(x)g'(x) = 1

We therefore conclude that f/(z) and ¢’(z) are relatively
prime.

6. Write f(z) = f'(x)d(z),g9(z) = ¢'(z)d(x). Then
1, g are relatively prime. Let [(z) be the least common
multiple of f(z) and g(z).

Now % = f'(z)g’'(z)d(x) is divisible by f(x) and
g(x) and therefore I(x) divides %. On the other
hand, let [(z) = I'(x)d(x). Since f(z) = f/(z)d(z) di-
vides I(x) = U'(z)d(z) we conclude that f'(x) divides
U(x). Similarly, ¢'(z) divides ’(x). Since f'(x)g’(x)
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are relatively prime it then follows that f'(z)¢’'(z) di-
vides I’(z). Consequently, % = f'(x)g'(z) divides
U'(z)d(z) = I(z). It now follows that £&)9(x)

E) is a scalar
multiple of I(z).

7. If l(x) and !'(x) are both lcms of f(x),g(x) then
I(x)|l'(z) and I'(z)|l(x) so that I'(z) = cl(x) for some
¢ € F. Since both are monic, ¢ = 1 and I(z) = I'(x).

8. Without loss of generality we can assume that f(x) is
monic. Let d(x) be the ged of f(z) and g(z). Since f(x)
is irreducible and d(x) divides f(x) either d(xz) = 1 or
d(xz) = f(z). However, in the latter case, f(z) = d(x)
divides g(x), contrary to the hypothesis. Thus, d(z) = 1
and f(x), g(x) are relatively prime.

9. This follows from Exercise 6.

10. Let d(x) be the greatest common divisor of f(x)
and ¢g(z) in F[z] and assume, to the contrary that d(z) #
g(x). Write f(z) = f'(z),g(z) = ¢'(z)d(x). As in the
proof of Exercise 6 there are a(z), b(x) € F[z] such that
a(x)f'(x) + b(z)g'(x) = 1. Since F C K it follows that
f'(z) and ¢’ (x) are relatively prime in K[z]. But then the
gcd of f(z) and g(x) in K[z] is d(x) contrary to the as-
sumption that g(z) divides f(z) in K[z]. We therefore
have a contradiction and consequently, d(z) = g(z) as
required.

11. A polynomial g(x) dividesf(z) if and only if g(z)
has a factorization cp; (z)7* ... p(z)/* where ¢ € F and
fi are in NU {0} and f; < e;. There are then e; + 1
choices for f; and hence (e; +1) X - - - x (e; + 1) choices
for (f1,..., ft). For any such ¢ there is a unique ¢ such
that the polynomial is monic.

3.2. Roots of Polynomials

1. Since non-real, complex roots of a real polynomial
come in conjugate pairs the number of non-real, complex
roots of a real polynomial is always even. Therefore, if
the degree of a real polynomial is 2n + 1, an odd number,
there must be a real root.
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2. z* + 522 + 4. Another, which is irreducible over the
rational numbers is z* + 222 + 2.

3. Note that complex conjugation satisfies

T tW=Z+W,ZW=2T (3.1)
If A\ is a root of f(x) then
AN 4 A N g A+ ag =0 (3.2)

Taking the complex conjugate of both sides of (3.2) and
using (3.1) we obtain

Nt ay, AT
A @ A @A ag =0

~n—1

X7L+an_1 4+

+aA+ag=0.

S

Thus, X is a root of f(x).
4. 2" — 62* 4+ 152718z + 10.

5. If 3+ 4i is aroot of f(x) then so is 3 + 4i = 3 — 4.
Then (z — [3 + 4d])(z — [3 — 4i]) = 22 — 3z + 25 is a
factor of f(z). Likewise 2 — 62 + 25 is a factor of g(x).
6. Let n = maz{deg(f(z),g(x)}. Then f(x),g(x)

F(nylz] and we can write f(z) = Y1 aa’, g(z) =

>isobia’. Then f(z) + g(x) = Yi_g(a; + bi)a’. By
the definition of D we have

n

D(f(z)) = Ziaixifl, D(g(x)) = Zibmiil.

=1

Adding D(f(z)) + D(g(z)) we get

n

D(f(x)) + D(g(x)) = Y _(ia; + ibj)a’" =

i=1
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S ias +5)ai = D(f(a) + (o).
=1
7. Assume f(z) = > jaxz’. Then cf(z) =

St o(ca;)x'. We then have

3
3

8. Let k,l be natural numbers.
D(z**Y) = D(z*

We first prove that
Yzl 4+ 2FD(2!). By the definition of

D we have
D(xk)acl + ka(xl) =k 2t + 2 (l l_l) =
ka k—+1— 1+l$k+l 1 (k+l) k+1—1 _
D(z** = D(2* - 2.

We next prove if g(z) € ]F[w] and k is a natural num-
ber then D(z*g(z )) D(a*)g(x) + 2*D(g(z)). Write

")
g(x) =31 o bix’. Thenz¥g(x) = 31"

b;(z* - 2%). By
Exercises 6 and 7 we have
D(Z bi(z* -2ty = Z biD(z* - 2%).
i=0 i=0

By Exercise 7 we have

zn:bip(xk zn: bi[D(z")z" + 2*D(2")] =
=0 =0

ibip(x’“) + En:bimkD(x ) =

=0 =0

z*) i bix' 4 ¥ i b;D(x
i=0 1=0

D(z")g(x) + 2" D(g(x)).
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Now write f(z) = Yoitgaja’. Then f(z)g(x) =
Z;n:o a;x7 g(x). By Exercises 6 and 7 we have

D(Y_ajalg(x)) = a;D(xg(x))
§=0 j=0
Then by what we showed immediately above we have

m m

> a;D(alg(x)) =Y a;[D(a?)g(z) + 2/ D(g(x))] =

Jj=0 j=0

> a;D(a?)g(x) + Y a;a7 D(g(x)) =
=0 j=0

m
> _(aj)a’ g
§j=0

+Za]ij

D(f(x))g(x) + f(x)D(g(x)).

9. Suppose « is a root of multiplicity at least two. Then
(r — «)? divides f(x). Then we can write f(x) = (z —
0)2(x). Then D(f(x)) = 2(z—a)g(x) +(x—)% (x).
Consequently (z — «) is a factor of D(f(x)).

On the other hand, suppose f(z) has n distinct roots,

a1,... 0. Then f(z) = (x —a1)...(x — ayp). Then
[
N ; (x — ;)

Evaluating D(f(x)) at «; we obtain (o; — av1) ... (o —
ai—1)(;—aiq1) ... (a—ay,) # 0. Therefore (z— ;) is
not a factor of D(f(z)) and f(z), D(f(z)) are relatively
prime.

10. If ¢ # j then (x — ) is a factor of Fj(x) and
hence f;(«) and therefore f;(a;) = 0. On the other hand,

(o) = £%) — 1 Now suppose
(%) = B

n

> eifil@) =0

ij=1

Evaluating at «; we obtain
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chfj(oq,) = ¢ fila;) = ¢

J=1

Thus, ¢; = 0 for all ¢ and B = (f1,..., f,) is linearly
independent in F,,_; [x]. Since dim/(F,,—1[z]) = n, Bisa
basis.

11. Set f(x) = Yi_; Bjfi(x). f(z) satisfies the con-
ditions. Suppose g(x) does also. Then «; is a root of
f(z) — g(z) for all j. Since f(z) — g(z) € Fp_1[z] if
f(z) — g(z) # 0 then it has at most n — 1 roots. There-
fore f(z) — g(x) = 0and g(x) = f(x).

12. If g(x) € Fp_1[z] and g(c;) = B, then g(x) =
Z?zl B;f;(x) by Exercise 8. Since the coefficient of
fj(z) is g(a;) we conclude that

9(041)
l9(2)]s = j
g(an)
13. The coordinate vector of the constant function 1 is
1

. The coordinate vector of z* is

2 n—1
1 o o5 ... o
1 az a3 ... ay?
MI]F 11z (87 B) = : .
2 n—1
1 o a g,
When a4, . .., «, are distinct this matrix is invertible.
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Chapter 4

Theory of a Single Linear Operator

4.1. Invariant Subspaces of an

Operator
I Iy
1. T( T2 ) = xTo
T3 T+ To
2. Let (uq,...,uy) be a basis for U. Extend this to a

basis (w1, ..., u,) of V. Let T be the operator such that
T(u;) = u, for all 7.

3.22 -3z +2.
4. 13 — 222 —x + 2.

5. 8(T(v)) = (ST)(v) = (T'S)(v) = T(S(v)) =
T (M) = AT(v).

6. Let T : U — U be defined by T'(u) = T(u). Since
T is invertible on V, in particular, 7" is injective. Then
T is injective. Since V is finite dimensional it follows
that U is finite dimensional. Consequently by the half is
good enough theorem T is surjective. Now letu € U
be arbitrary. By what we have shown there is a v’ € U
such that T'(u/) = w. Then T~ (u) = T-YT(u)) =
(T7'T)(uw') = Iy (v') = v € U. Thus, U is T~ ! invari-
ant.

7. Suppose v € F1 N E_1. Then T'(v) = v and T'(v) =
—v. Then v = —v or 2v = 0. Since 2 # 0,v = 0. So
EiNE_; = {0}. Sowe need to show that V = E1+E_;.
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Let v € V be arbitrary. Setw = (v + T(v)) and y =

(v —T(v)). Weclaimz € Ey,y € E_;.

T(x) = T(%(v +T(v))) = %T(fv + T (v))

= S (T(0) - T*(v) = 5(T(0) ~v) = .

Nowv=x+yc F1+ E_;.

8. In addition to R? and O the invariant subspaces are

1 T
Span(|1])and {| z2 | |x1 + 22 + z3 = 0}.
1 I3
9. The T —invariant subspaces are
1 1 0
{0}, Span(| 0 ]),Span(|O|,|1]),R3.
0 0 0

10. This follows since for any polynomials f, g we have
J(T)+g(T) = (f +9)(T) and f(T)g(T) = h(T) where
h(z) = f(z)g(x).
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1. Need to show that i) If f(z), g(x) € Ann(T,v) then
f(z) + g(z) € Ann(T,v); and ii) If f(z) € Ann(T,v)
and h(z) € Flx] then h(x) f(z) € Ann(T,v).

D) [(f +9)(D(v) = [f(T) + 9(D)](v) = f(T)(v) +
g(T)(v) =0+0=0.

i) [p(T) f(T)](v) = M(T)(f(T)(v)) = K(T)(0) = 0.

12. Letu € U,w € W.Then T (u+w) = T'(u) + T (w).
By hypothesis, T'(u) € U and T'(w) € W and therefore
T(u)+ T(w) € U + W. Thus, U + W is T—invariant.

Suppose € U N W. Since « € U and U is T'—invariant
T(x) € U. Similarly, T(x) € W and hence T(x) €
Uunw.

13. Need to show that i) If f(z),g(z) € Ann(T) then
f(z) + g(x) € Ann(T); and ii) If f(x) € Ann(T) and
h(x) € F[z] then h(x) f(z) € Ann(T).

i) Let v be an arbitrary vector. We then have

[(f +9)(D)](v) = [f(T) + g(T))(v)
F(T)(v) + g(T)(v) =040 =0.

Since v is an arbitrary vector f + g € Ann(T).

ii) Let v be an arbitrary vector. Then

[W(T) F(T))(v) =

Thus, h(z)f(x) € Ann(T).

14. Assume T has an eigenvector v with eigenvalue .
Then pip . (z) = x — A Since pr(z)(v) = 0 it follows
by Remark (4.4) that (z — \) divides pr(z).

15. Assume v is an eigenvector with eigenvalue . Then
T(v) = Av. We then have

[T(v)]s = [Mv] = A[v]s.
On the other hand,

[T(v)]s = Mx(B, B)[v]s.
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Thus, we conclude that [v]g is an eigenvector of the ma-
trix My (B, B) with eigenvalue \.

Conversely, assume [v]z is an eigenvector of the matrix
My (B, B) with eigenvalue \. Then

MT(B7B)[’U]B = )\[’U]B = [/\’U}B.
On the other hand,

Mz (B, B) = [T (v)]5.

Thus, we have

[T(v)]s = [Mv]s-

It then follows that
T(v) = \v.

16. This is a consequence of the fact that f(A) =
My (B, B).

17. Let f(x) € F[z] and let T be an operator on
a finite dimensional vector space. Suppose f(S) =
Oy_v. Then f(Mg(B,B)) = O0,, by Exercise 16.
Then f(Mg(B,B)"") = 0,,,. However, Mg/ (B,B) =
Mg (B,B)!" and consequently, f(Mg/(B,B)) = 0.
Then by Exercise 16, f(S’) = Oy . This implies that
ws (x) divides pg(z). However, the argument can be re-
versed so that pg () divides p1s/ (). Since both are monic
they are equal.

18. Since T'(v) = Av,v = +T(v). Then
T () = T (5T(w) = {77 (T(v)
| !
= X(T T)(v) = XIV(U) =3

19. This follows since v is an eigenvector of T* with
eigenvalue \*. Also, if v is an eigenvector for an operator
S with eigenvalue A then v is an eigenvector for ¢S with
eigenvalue cA. Finally, if v is an eigenvector for opera-
tors S, Sy with respective eigenvalues A1, A2 then v is an
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4.2. Cyclic Operators 35
eigenvector of S + S, with eigenvalue A1 + 2. Now if 0 0 0
— m e k
flz) = U + + 012 + ag the oerators a,T" has 2 T(z) = 1 T(z) = 0 T3(z) = 0
v as an eigenvector with eigenvalue ai A*. Then add. 0 1 0
0 0 1
-1 —1(,,).
20. Apply S7T'S to S~ (v): So (T, z) contains the standard basis of R* and there-
—4
(S7ITS)(S™Hw) = (S7'T)(S(S7 (v)) = fore (T, z) = R%. Now T?(2) = _05 and pp o (x) =
0

(STIT)(Iy(v) = (S7'T)(v) =
S™HT(v)) = S7' (M) = AS(v).

So we applied S~1T'S to the vector S~!(v) and the result
is AS™1(v). Thus, S~!(v) is an eigenvector of S~1T'S
with eigenvalue \.

21. Note for any polynomial f(x) that f(ST)S =
SF(TS) and f(TS)T = Tf(ST).

Let f(z) = psr(z) and g(z) = pr(z). Then
f(ST) = O0y—v. Then f(ST)S = Oy_,v. By the above
Sf(TS) = 0y_y whence (T'S)f(T'S) = Oy . It then
follows that g(x) divides x f(x). In exactly the same way
f(z) divides zg(z). In particular, f(z) and g(x) have the
same non-zero roots.

4.2. Cyclic Operators

1 3
la)y T(z) = |—-1],T%2) = |—-4|,T%2) =
0 -2
3
-3
-2
1 1 3
The matrix | 0 —1 —4 ] is invertible and therefore
0O 0 =2

(2,T(z),T?(x)) is a basis for R3.
prz(r) =23 — 22+ — 1.

b) pr(z) = — 1.
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ot + 522 +4 = (2% + 1)(2? + 4).

3. Let z € V be any non-zero vector. Then (T, z)
is a T'—invariant subspace which is not {0}. Therefore
(T, z) = V and T is a cyclic operator.

4. There are lots of such operators. Here is a simple one

T T
T( X2 _ 2182
T3 3.133
Ty 4334

If z = then (T, z) = R%.

1
1
1
1
5. Since T is cyclic, pr(x) has degree 3. Suppose pp ()
has one real root so that pur(x) = (x — A\)g(x) where
g(x) is a real irreducible quadratic. Let  be a vector

such that R3 = (T, x) Then the T—invariant subspaces
are R?, {0}, (T, (T' = AMl)z) and (T, g(T)()).

We can suppose pr(x) has three real roots. If there is
only one distinct root, say A so that ur(z) = (x — A)3. In
this case there are four T'—invariant subspaces.

Assume ur(z) = (z — a)?(z — B), a # 3, then there are
six T'—invariant subspaces.

Assume 7 () = (x —a)(x — B)(z — ), distinct. In this
case there are eight T'—invariant subspaces

6. Let T' have the following matrix with respect to the
standard basis
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1 1 0

0 1 1

0 0 1
Here is another:

1 0 O

0 0 1

0 -1 0

7. Let T have the following matrix with respect to the
standard basis

[en N eI \V]
o = O
= = O

8. Because T is cyclic, pur () has degree 4.

The number of T'—invariant subspaces can be computed
from a factorization of p(x). The possibilities are:

p(x)? where p(x) is a real quadratic irreducible. There
are three T'—invariant subspaces in this case.

p(x)(x — «)? where p(x) is a real irreducible quadratic
and o € R. There are six T'—invariant subspaces in this
case.

p(z)(z — a)(xz — B) where p(zx) is a real irreducible
quadratic and o # [ are real numbers. There are eight
T —invariant subspaces in this case.

(z —a)*, o € R. There are five T—invariant subspaces in
this case.

(x — a)3(x — ) where o # 3 are real numbers. There
are eight T'—invariant subspaces in this case.

(x — a)?(z — B)? where o # [3 are real numbers. There
are nine 7'—invariant subspaces in this case.

(r—a)?(z—B)(x—~) where «, 3, vy are distinct real num-
bers. where o # 3 are real numbers. There are twelve
T —invariant subspaces in this case.
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(z—a)(x—B)(x—v)(x—9) where «, 3, ~, § are distinct
real numbers. where o # [ are real numbers. There are
sixteen 7'—invariant subspaces in this case.

9. Let T be the operator on R* which has the following
matrix with respect to the standard basis:

0 1 0 0
-1 0 0 0
0 1 0 1
0 0 -1 0

10. Let T be the operator on R* which has the following
matrix with respect to the standard basis:

o O O
SO = =
o N O O
w O O O

11. Let T be the operator on R* which has the following
matrix with respect to the standard basis:

oS O O =
S O N O
O w o o
= O O O

12. Set vg = v and v,y = T%(v) for 1 < i < n. By
our hypothesis, (v, ...,v,_1) is a basis for V. Assume
S(v) = apvg + ... an-1V,—1. Set f(x) = ap + a1z +
<o+ ap_12"t € F,_q[z]. We claim that S = f(T)).
Since S and f(T) are linear operators it suffices to show
that S(v;) = f(T)(v;) fori =0,...,n— 1.

We have constructed f(x) such that f(T)(v) =
f(T)(vg) = S(v). Consider f(T‘)(vi) forl <i<n-—1.
F(T)w) = FT)(T'(v)) = T (T)(v) = T'S(v) =
ST (v) = S(v;).
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4.3. Maximal Vectors

1. a) pp.e, () = 2% + 22 + 2,
UT.e, () = 2% — 22 — 4,
UT.es () = 2% — 22 — 4.
b) ur(z) = 2% — 20 — 4.
C) eo, ez are maximal vectors.

2. pur(z) = (z — 2)%(x — 1). ey and e3 are maximal
vectors for 7.

3. pr(r) = 2t —a3—a?—2—-2 = (2-2) (23 +2% +2+1).
e is a maximal vector.

4. Clearly (v,) is linearly independent since an eigenvec-
tor is non-zero. Assume we have shown that (v1, ..., v;)
is linearly independent with ;7 < k. We show that
(v1,...,vj41) is linearly independent. Suppose that

v+ -+ 611041 =0 4.1
Apply T to get

aT(vi) 4+ 1T (vj41) =0

Using the fact that T'(v;) = a;v; we get

cla1v] + -+ CjQ;U; + Cj+1‘Cl{j+1’Uj+1 (42)

Now multiply (4.1) by ;11 and subtract it from (4.2) to
get

Cl(Oél — Oéj+1)’l)1 + o4 Cj(Oéj — Otj+1) =0 (43)

Thus, we obtain a dependence relation on (v1,...,v;).
However, (v1,...,v;) is linearly independent and there-
fore

cl(al — aj+1) == cj(aj — O[j+1) = 0
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Since the «; are distinct, forall ¢ < j 41,0 — aj41 # 0.
Therefore

01202:"':Cj:0.
In then follows that the dependence relation in (4.1) is
Cj+1Vj+1 =0

Since v;11 is non-zero, ¢+ = 0.

5. Since 22 + 1,z + 1, z — 2 are relatively prime it follows
that (22 + 1)(z + 1)(z — 2) divides pur(z). Since T is an
operator on R* the degree of 7 () is at most four. We
can then conclude that pr(z) = (22 + 1)(z + 1) (2 — 2).
Set v = vy + vy + 3. Since pr .y, (), P, () and
W, () are relatively prime, pr.(z) is the product
700 (21070 ()17, () = (2 4 1) (@ + 1) 2 — 2) =
pr(x). Thus, v is a maximal vector.

6. (T,v1) = Span(vy,v3) and every non-zero vector v
in (T, v,) satisfies pr (7)) = 2% + 1 since 2% + 1 is irre-
ducible. v3 is an eigenvector with eigenvalue -1 and v, is
an eigenvector with eigenvalue 1. If w = w; + wy + w3
with w1, we, w3 nonzero and wy € Span(vy,vs), ws €
Span(vs) and wz € Span(vy) then pp () is divisible
by (22 + 1)(x + 1)(x — 1) and is therefore a maximal
vector. On the other hand, if w;, wo are non-zero but ws;
is zero then prw(z) = (22 + 1)(z + 1). If wq, w3 are
non-zero but wy = 0 then i 4 () = (2? +1)(z — 1). If
wa, w3 # 0, w; = 0 then pr 4 (z) = (z+1)(z — 1).

7. If v # 0 then pi7 () is a non-constant polynomial
and divides pp(x) which is irreducible. Then gy, (z) =
pr(z) and v is a maximal vector.

8. Since pr(x) has degree 5 and dim(F3) = 5 the op-
erator T is cyclic. Note that z° — x = z(z — 1)(x —
2)(z—3)(x—4). Set f;(z) = £=£ wherei = 0, 1,2, 3,4
and let v be a maximal vector. Set v; = f;(T)v. Then
v; is an eigenvector with eigenvalue 7,7 = 0,1,2,3,4.
Since these eigenvalues are distinct, (vy, ..., vs) is inde-
pendent by Exercise 4. By the half is good enough theo-
rem (vq,...,v5) is a basis. A vector cyv1 + « -+ + ¢5U5
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is a maximal vector if and only if ¢; # 0 for all 7. Thus,
there are 4° maximal vectors.

4.4. Indecomposable Linear
Operators

1. This operator is decomposable since it is not cyclic. It
has minimal polynomial 2 + 2z + 1 = (z + 1)%.

2. This operator is indecomposable. jire,(z) = 2® +
322 +3x+1 = (x+1)2. So, the operator is cyclic and the
minimum polynomial is a power of the irreducible poly-
nomial z + 1.

3. This operator is indecomposable. jir e, (z) = 23 —

622 + 122 — 8 = (z — 2)3.

4. Set f(x) = ps(x). If T in in P(S) then there is a
polynomial g(x) with degree of g(z) less then degree of
f(z) such that T = g¢(S). Since g(z) is not the zero
polynomial, f(z) is irreducible and deg(g) < deg(f)
it must be the case that f(z), g(x) are relatively prime.
Consequently, there are polynomials a(x), b(x) such that
a(x)f(z) + b(z)g(x) = 1. Substituting S for x we get
a(S)f(S) +b(S)g(S) = Iy. Since f(S) = Oy and
g(S) = T we have b(S)T = Iy. Thus, b(S) € P(S) is
an inverse to 7.

5. Set fi(x) = pre(z). Then fi(z) divides p(z)™
and so there is a natural number m; < m such that
fi(x) = p(z)™. Let j be chosen such that m; > m; for
i =1,2,...,n.Thenthe gcd of f;(x)is f;(x) = p(x)™.
However, the gcd(f1,. .., fn) is pr(z). Thus, f;j(z) =
pr(z) and v; is a maximal vector.

6. Since T is indecomposable, pr(x) = p(x)™ for some
irreducible polynomial p(z). By Exercise 5 there is a j
such that v; is maximal. Since 7" is indecomposable, T is
cyclic. Therefore V = (T, v;).

7. Let f(z) = pr(z). Since T is indecomposable,
deg(f) = dim(V) = 2n + 1. Since the degree of f(z) is

K23692_SM_Cover.indd 46

odd it has areal root a. Thus, x—a divides f(z). However,
since f(z) has single distinct irreducible factor it follows
that f(z) = (z — 1)?n+1L,

8. Let f(z) = pr(x). Then either f(z) = n

for some n or f(x) = p(z)™ for some real irreducible
quadratic polynomial. By the theory of cyclic operators
in the first case the number of T-invariant subspaces is
2n + 1 and in the latter case the number is 7 + 1.

9. Let f(z) = pr(x). Then either f(z) = (z — a)?
or g(x)? where g(x) is an irreducible polynomial of de-
gree 2. In either case, let v be a maximal vector. In the
first case, any vector w such that (T, w) # V lies in
(T, (T — aI)(v)) which has dimension three and contains
p? vectors. Any other vector is maximal and hence in this
case there are p* — p3 maximal vectors.

(z — a)

Suppose f(z) = g(x)?. Now if V # (T, w) then w be-
longs to (T, g(T')(v)) which has dimension 2 and p? vec-
tors. In this case there are p* — p? maximal vectors.

10.  Suppose T' is indecomposable.
f(x) = p(z)™ where p(z) is irreducible. Let v be
a maximal vector. The only proper T'—invariant sub-
spaces of V are (T,p(T)*(v)) for 1 < k < n. More-
over, (T,p(T)’T*(v)) is a subspace of (T, p(T)?(v))
and hence (T,p(T)(v)) is the unique maximal proper
T —invariant subspace.

Let pur(x) =

On the other hand, suppose 7' is not indecomposable.
Then there are T'—invariant subspaces U and W such that
V = U @& W. Let U’ be a proper maximal T—invariant
subspace of U (possibly {0}) and similarly choose W’ in
W. Then U & W' and U’ & W are two distinct proper
maximal 7' —invariant subspaces.

4.5. Invariant Factors and
Elementary Divisors of a
Linear Operator
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1. Set d; =
(12,22, 28, 34, 38).

dim(U;). Then (di,...,ds) =

2. The invariant factors, d;(z), ordered so d; |dz|d3|d4 are

di(z) = (2% =z +1)%(z* + 1)
da(z) = (2* — 2+ 1)2(2® + 1)*(z + 2)
ds(z) = (2? — 2z + 1)3(2® + 1)*(z + 2)?

dy(z) = (22 —z+ D) 2? +1)3(x +2)2

dim (V) = 44.

3. The elementary divisors and the invariant factors are
22+ land2? +1

4. There is a single elementary divisor and invariant factor
which is (2% + 1)?

5. The elementary divisors are 2 4+ 1,z + 1 and = — 1.
There is a single invariant factor, z* — 1.

6. The elementary divisors are z,x,x — 1,2 — 1 and the

invariant factors are 2 — x, 2% — .

7. Assume the minimum polynomial of T is
p1(x)...pi(x) where p;(x) is irreducible and distinct.
LetV,={v e V|p;(T)v =0}.ThenV =V, @---®V;.
If each V; is completely reducible then so is V. Con-
sequently, we may reduce to the case that the minimum
polynomial is irreducible. In this case, there are vectors
v1, ...,V such that pr ., () = p(z) is irreducible and

V=(Tv)® - (T, v,).

Each space (T, v;) is T'—irreducible. It follows from this
that V' is completely reducible.

8. Assume V' is completely reducible and pr(z) = (x —
aq)...(x — o) where o are distinct. Set V; = {v € V :
(T — a;Iy)(v) = 0} Then

Vzvl@"'@‘/:‘,~

K23692_SM_Cover.indd 47

Let B; be a basis for V; and set B = Byt ...B8;. Then
M (B, B) is a diagonal matrix.

Conversely, assume that 7" is diagonalizable. Then there
exists a basis 3 consisting of eigenvectors. Let aq, ..., ay
be the distinct eigenvectors and set V; = {v € V|T'(v) =
a;v}. Then V; + --- + V; is a direct sum. Since B C
i+--+V

V=Vi+-+V.

Consequently, V = V; & - -- @ V4. Thus, V is completely
reducible. Now pr(z) = (2 — a1) ... (& — ay).

9. Let dim(V) = nandset V; = {v € Vip;(z)"(v) =
0} so that V; is the p;—Sylow subspace. If there are
infinitely many 7'—invariant subspaces in some V; then
there are clearly infinitely many 7'—invariant subspaces.

Suppose, on the other hand that each V; has finitely many
T'—invariant subspaces. Suppose U is a T'—invariant sub-
space. Set U = U N V;. Then

U=U,®---dU.

It follows from this that there are only finitely many
T —invariant subspaces.

10. Let dim(V) = n and pi(x),...,p:(x) be the
distinct irreducible factors of ur(z) Set V; = {v €
Vp:(T)(v) = 0} so that V; is the p; () —Sylow subspace
of V and

Then T is cyclic if and only if T restricted to each V; is
cyclic. Also, V has finitely many 7' —invariant subspaces
if and only there are finitely many 7" —invariant subspaces
in V; for each 7 by Exercise 9. Thus, we may assume that
wur(z) = p(xz)™ for some irreducible polynomial p(z).
If T is cyclic in this case then the number of 7T-invariant
subspaces is m + 1. On the other hand suppose 7" is not
cyclic. Then there are at least two elementary divisors
(invariant factors). Thus, there are vectors vy, v with
pr.v, () = p(x)™ and pr 4, () = p(x)™2 such that
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(T, v1) N (T, vy) = {0}.

Set wy; = p(T)™ 1 (vy),ws = p(T)™2"1(vy). Then
T, () = 7w, () = p(z) and

<T, ’lU1> n <T, w2> = {O}

Now each of the spaces (T, w; + cws), ¢ € F is distinct
and T—invariant. Since F is infinite there are infinitely
many 7T'—invariant subspaces.

11. Let V(p) = {v € V|p(T)™(v) = 0} and V(q) =
{v e V]g(T)*(v) = 0}. Then V = V(p) & V(q). Since
a(x)p(x)™+b(x)q(z)™ = 1it follows that a(T)p(T)™ +
b(T)q(T)" = Iy. However, a(T)p(T)™ restricted to
V(p) is the zero map and consequently, b(T")q(T)™ re-
stricted to V (p) is the identity. Then b(T")q(T)"p(T") re-
stricted to V (p) is identical to p(7T') restricted to V(p).
In a similar manner, b(T")q(T)" restricted to V (q) is the
zero map and a(T")p(T)™ restricted to V' (g) is the identity
map. Consequently a(T")p(T)™q(T) restricted to V (q) is
the same as ¢(T') restricted to V'(g). Thus, f(T) restricted
to V(p) is equal to the restriction of p(7) to V(p) and
f(T) restricted to V(q) is equal to the restriction of ¢(7")
to V(q).

Suppose now that z = v, + v, with v, € V(p) and v, €
V(q). Then f(T)(x) = f(T)(vp +vq) = f(T)(vp) +
f(T)(vg) = p(T)(vp) + q(T)(vg). If | = maz(m,n)
then f(T) (x) = p(T)l(vp) + q(T)l(vq) =04+0=0.
Thus, f(T)! = Oy _v and f(T') is nilpotent.

12. Let p(z)¢,...,p(x)° be the elementary divisors of
T where e; < ey--- < ¢; < m. Then there are vectors
v1, ..., such that pp ., (z) = p(x)® and

V=(Tv)® - &(T,v).
NOWU1:

(T, p(T) = (w1)) @ - @ (T, p(T)* ™" (vr))

and has dimension td which proves a).
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Now assume e, < j—1 < eyande_; < 5 < ¢.
Clearly £ <.

Now

Ujfl = <T, ’l)1> D---D <T, Uk71>@
(T, p(T)™ 7+ (v)))

@ (T, p(T) 7+ () (4.4)
Uj=(T,v1)® - ®(T,v,_1)®
(T, p(T) ™ (w))®
@ (T p(T)* ™ (wy)) 4.5)

It follows from (4.4) that m;_1 = dim(U;_1) = e1d +
.o.eg—1d+ [t —k+1](j — 1)d. It follows from (4.5) that
mj = dzm(U]) = €1d+ .. .€l,1d+ [t — Z + 1]]d

Suppose k = [ then m; — m;—y = dim(U;) —
dim(U]‘_1) = [t—l—l—l]dand% =t—1+1
which is the number of e; which are greater than or equal
to J.

Suppose k < I. Then ey, = --- = ¢,_; = 5 — 1. Making
use of this we get that

m; = dim(Uj) =

eld—‘r...ek_ld-i-(j—l)d[l—l—k]‘i‘[t—l-‘rl]jd.
Then

(G—1Ddll—1—k]+[t—1+1]jd—[t—k+1](j — 1)d =
[t—1+1]d

J =M -1

and we again get " — = [t — I + 1] which is equal
to the number of e; which are greater than or equal to j.
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13. Since each invariant factor is the product of distinct 10 00 1.0 00
elementary divisors, it follows that the characteristic poly- 1100 1100
nomial of T is equal to the product of the elementary 001 0f’l0O 1 10
divisors of T'. It therefore suffices to prove this in the 0 011 00 11
case that pr(z) = p(x)™ for some irreducible polyno- 10000 0 10000 0
mial p(x) of degree d. In this case dn;m?éi)eg(p(x)m) = 010000 11000 0
deg(xr(x)) = dim(V) so that m = =——=. 001000 00100 0
7'0011007001100
. 0 00110 000110
4.6. Canonical Forms 000011/ \0o000T1°1
0 0 0O 0 0 00
0 00 -1 0 0 0O0OO0O O 8.0440000 1 0 0 O
100 -2 0 0 0 0 0 O o o 0o of’[{0 O 0 O
o1 0 -2 0 0 O0O0O0 O 0 010 00 10
o001 -220 0 0O0O0O O 00 0 O 00 0 0
| o 00 0 0 -1000 0 00 0 0 1 0 0 0
10 00 0 1 -1 0 0 0 © o1 0o01’lo1 0 o0
o000 o0 O O O0O0OO0O —4 00 1 0 00 1 0
o000 o0 O o0 100 O
oOoo0o0 0 O O 010 —4 9. The characteristic polynomial of a nilpotent operator
o000 0 0 O O0O0OT1 o0 on an n—dimensional vector space is x". It is completely
reducible if and only if the minimum polynomial has dis-
2. <0 4> tinct roots and consequently we must have pp(z) = z.
L4 This implies that 7' = Oy _, v-.
0 -1 10. Every vector of V satisfies p(T")¢(v) = 0 and there-
311 0 =2 fore p(T)¢ = Oy v
0 1 -2
11. Let A be a square matrix. =~ We have seen
30 0 0 that if f(z) € F[x] then f(A'") = f(A)". Since
4 13 0 0 also My (B,B) = f(Ms(B,B)) it follows that
00 -2 0 S and S’ have the same minimum polynomial. Let
00 1 =2 p1(x),...,ps(z) be the distinct irreducible polynomi-
als dividing ps(x) = ps(z) and let pg(z) =
2 0 00 .
12 0 0 pr(x)™ . pg(x)™=. Let V; = {v € V|p;(S)™i(v) =
5. 00 2 0 0} and V/ = {v € V|p;(S)™(v) = 0}. Note
00 1 9 for any operator T', nullity(T) and nullity(Mr (B, B))
and equal and for any square matrix nullity(A) and
1 0 0 0 1000 nullity(A*") are equal. Tt follows that dim(V;) =
01 0 0 0100 dim(V/). By Exercise 12 of Section (4.5) we can deter-
6. 00 1 0l’lo 1 1 0 mine the elementary divisors of S divisible by p;(z) by
00 1 1 00 1 1 determining the dimensions of the Ker(p;(S)*) for all
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k < m,; and likewise for the elementary divisors of S’.
However, these numbers will all be the same and conse-
quently, S and S’ have the same elementary divisors and
invariant factors.

00 0O
00 0O
12. 00 2 0
00 1 2
000 O 0 O
000 O 0 O
13 000 O 0 O
000 -1 0 O
000 1 -1 0
0 0 0 1 -1

4.7. Linear Operators on Real
and Complex Vector Spaces

1. i) implies ii). Assume 7' is completely reducible. Note
that the assumption that 7" is completely reducible carries
over to the restriction of 7" to any 7'—invariant subspace.

Set f(z) = pr(x) and n = dim(V). Since f(z) € Clz]
f(z) splits into linear factors. Let o, ..., oy be the dis-
tinct roots of f(z). Set V; = {v € V|(T — oIy )" (v) =
0}. Then V = Vi @& --- @ V;. We show that, in fact,
T(v) = «a;v for v € V;. Suppose to the contrary that
there exists v € V; such that ur,(z) = (z — o;)* with
k > 1. Then (T,v) is indecomposable. However, by
the above remark (7', v) is completely reducible, so we
have a contradiction. Thus, every non-zero vector in V;
is an eigenvector with eigenvalue ;. In now follows that
pr@)=(x—ag)...(x — o).

i) implies iii). Assume pr(z) = (z — 1) ... (x — ay)
with o distinct. Set V; = {v € V|T'(v) = a;v}. Then
V=Vi®---®V;. Foreach i, T restricted to V; is a; Iy,
Choose a basis B; for V;. Each vector in B; is an eigen-
vector with eigenvalue «;. Now set B = B1f ... #§B;. This
is a basis of eigenvectors.
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iii) implies iv). Let B be a basis of eigenvectors. Then
pr (B, B) is a diagonal matrix which must be the Jordan
canonical form of 7.

iv) implies i). Let 3 be a basis for V' such that M (B, B)
is the Jordan canonical form of T'. Since the Jordan canon-
ical form is diagonal this implies that the basis B consists
of eigenvectors. Let a1, . . . , a4 be the distinct eigenvalues
andV; = {v € V|T'(v) = yv}.ThenV = V1 &---dV;.
Suppose U is a T'—invariant subspace of V. Set U; =
U N U;. Then

U=U,@---aU.

Since 7" acts a scalar when restricted to V; every subspace
of V; is T'—invariant. Let W; be any complement to U; in
Viandset W = W@ --@W,;. Then W is a T —invariant
complement to U in V.

2. i) implies ii). Let « be an eigenvalue of T and let (x —
a;)™ be the exact power of (z — ) which divides pr(x).
Let pup(z) = (x — o)™ f(x). Then f(x) and x — « are
relatively prime. Set V,, = {v € V|(T — aly)(v) = 0}
and Vy ={v e V|f(T)(v) =0}.Then V =V, @ V;. It
follows from our hypothesis that Vy = {0} and f(z) = 1.

If T has more than one elementary divisor then V' can be
decomposed into a direct sum, therefore by our hypothe-
sis, there is only one elementary divisor and one Jordan
block.

ii) implies i). If there is a single Jordan block of size n,
say J,, (), then T is cyclic and the minimum polynomial
of T'is (x — o)™ and T is indecomposable.

3. The minimal polynomial is pr(z) = (z — 1)(z% — 1).
The characteristic polynomial is (z — 1)(z3 — 1)2.

The invariant factors are (z — 1)(2® — 1) and 23 — 1.

The elementary divisors are z — 1, (x — 1)%,2% + = +
1,22 +z+ 1.
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1000 O O O
0100 0 0 O
0110 0 0 O
4.10 0 0 0 -1 0 O
0001 -1 0 O
0000 O 0 -1
0000 O 1 -1

5. Setw = —%—i—i@ andw? =L = —l—ig.Thenthe

w 2
Jordan canonical form of T" over the complex numbers is

100 0 0 0 O
010 0 0 O O
0110 0 0 O
000w O 0 O
0000w 0 O
000 0 0 w? 0
0000 0 0 w?

6. We define S, T on C* by matrices with respect to the
standard basis:

1 000 1 000
01 00 1 100
5_0010’T_0010
00 1 1 00 1 1

Then xs(z) = xr(2) = (x—1)* And us(z) = pr(z) =
(¢ — 1)%. The elementary divisors (invariant factors) of S
are ¢ — 1,7 — 1, (x — 1)2. The elementary divisors of T'
are (z —1)2, (z — 1)2.

7. There are eight possibilities. They are:

J2(0) @ J3(—2i) © J1(0) © J1(0) @ J1(0)

J2(0) ® J3(—2i) © J1(0)  J2(0))

JQ(O) S>) Jg(—2’i) S>) Jl(O) ¥ Jl(O) (S¥) Jl(—2i)
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JQ(O) S¥) J3(—2’i) S¥) JQ(O) > Jl(—Zi)

JQ(O) D J3(—2i) D J1(O) D JQ(—Qi)

JQ(O) S J3(72i) S¥) J1(72i) (S¥) Jl(*Qi) © J1(72i)

J2(0) @ J3(—2i) ® Jy(—2i) ® Jo(—2i)

JQ(O) S¥) Jg(*QZ‘) (S¥) Jg(*QZ‘)

8. The proof is by induction on n = dim(V). Let
a1, ..., be the distinct eigenvalues of S'and 31, ..., B¢
the distinct eigenvalues of 7. For « an eigenvalue of S set
Vsa = {v € V|(S — aly)™*(v) = 0}. Since S and T
commute, Vg , is T'—invariant. Likewise, define Vr g for
B = pB;j,1 < j <t Then Vr gis S—invariant.

As usual we have

V=Vsa, @ ®Vsa,=Vrp & & Vrg,.

Suppose s > 1. Then we can apply induction and con-
clude that for each i,1 < ¢ < s there is a basis B; of
Vs,a, such that the matrix of S and 7 restricted to Vs q,
with respect to B; is in Jordan canonical form. Thus, we
can assume that s = 1. In a similar way we can reduce to
the case thatt = 1. Let o = o, 8 = Sy.

Set Es, = {v € V|S(v) = av}. Then Eg, is
T—invariant. It is then the case there must be a vec-
tor v € Fg , which is also an eigenvector for T". Then
Span(v)is S and T—invariant. Let S denote the transfor-
mation induced on V/Span(v) by S and similarly define
T. By the induction hypothesis there exists a basis B =
(01,...,Up—1) such that the matrix of S and T with re-
spect to Bis in Jordan canonical form. For 1 <i1<n-1
let v;+1 be a vector in V' such that Span(v) + v;11 = U;
and set v; = v. Then B = (vy,...,v,) is a basis for
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V and Mg (B, B) and M1 (B, B) are in Jordan canonical
form.

-2 0 0 0
1 -2 0 0
g 0 0 2 0
0 0 1 2

10. Let B be a basis such that M = M (B, B) is in Jor-
dan canonical form. Let A be the diagonal part of M and
B = M — A. Then A is a diagonal matrix and B is a
strictly lower triangular matrix and hence is nilpotent. Let
D be the operator such that Mp(B,8) = A and N the
operator such that M (B, B) = B (sothat N = T — D).
Then D is a diagonalizable operator and N is a nilpo-
tent operator. Note for a Jordan block the diagonal part
is a scalar matrix (scalar times the identity) which clearly
commutes with the nilpotent part. From this it follows
that AB = BA and consequently DN = ND.

Suppose there exists polynomials d(x),n(z) such that
d(T) = D,n(T) = N. We use this to prove uniqueness.

Suppose also that D’ is diagonalizable, N’ is nilpotent,
D'N'" = N'D'and T = D' + N’. Since T = D’ +
N’ we have D'T = D'(D' + N') = (D')? + D'N' =
(D)2 + N'D' = (D' + N')D' = TD'. Similarly, T and
N’ commute.

Since D and N are polynomials in 7" it follows that D and
D', N and N’ commute. From D+ N =T = D’ + N’
we conclude that

D-D =N —-N (4.6)
The operator on the left of (4.6) is the difference of two
commuting diagonalizable operators and so is diagonal-
izable. The operator on the left hand side of (4.6) is
the difference of two commuting nilpotent operators and
therefore is nilpotent. However, the only nilpotent diago-

nalizable operator is the zero operator. Thus D — D’ =
N — N’ =0y_y whence D =D’ and N = N’'.

It therefore suffices to prove that there exist polynomials
d(x) and n(x) such that d(z) + n(z) = 1 and d(7T) is
diagonalizable, n(7") is nilpotent.
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Set f(r) = pr(r) and assume that f(z) = (z —
a1)™ ... (x — as)™ with o; distinet. Set V; = {v €
V(T — oIy )™ = 0} so that

V=V1& - --dV,.

Now let f;(z) = % Then f;(x) and (x — ;)™
are relatively prime and consequently there exists polyno-
mials a;(z), b;(z) such that

ai(z) fi(x) + bi(z)(x — ;)™ = 1.

Now a;(T) f;(T) acts as the zero operatoron V; @ - - - @
Viei @ Vig1 @ --- @ Vs and as the identity operator on
V;. Then a;a;(T) f;(T) is the zero operatoron Vi & - - - &
Vie1®Vig1®- - - @ Vs and acts as scalar multiplication by
a;on'V;. Also, a;(T) fi(T)(T —a; Iy ) is the zero operator
onVi@---dV,_1 B V41 PP Vs and is nilpotent on
V.

Now set d(z) = >0, aa;(z)fi(xz) and n(z) =
i ai(z) fi(x)(x — ;). Then d(T) acts a scalar mul-
tiplication by «; on V; for each ¢ and n(7") acts as
T — a;Iy on each V;. Consequently, d(T) is a diag-
onalizable operator, n(7T) is a nilpotent operator and
d(T) 4+ n(T) = T. Since d(T"),n(T) are polynomials in
T we have d(T)n(T') = n(T)d(T).

11. Assume first that T has no real eigenvectors. Let p(x)
be an irreducible factor of p7 (). Then p(x) has no real
roots and therefore p(z) is a real quadratic. Suppose U
is a T'—invariant subspace. Let the elementary divisors
of T restricted to U be py(z)™,...,ps(x)™= (note that
the p; () are not necessarily distinct. Each p;(z) is a real
irreducible quadratic. Then the degree of p;(x)™ is 2m;
and the dimension of U is the sum 2mq + --- + 2mg =
2(my + ... my).

1
12. Let T be the operator with matrix ( 01 O) with

respect to the standard basis. The minimum polynomial of
T is 2241 which has no real roots. However, T? = —Ig-.

13. TS = S7Y(ST)S. Thus, T'S and ST are similar.
Therefore if ST is diagonalizable then so is T'S.
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Chapter 5

Inner Product Spaces

5.1. Inner Products

1. Positive definite. If u = . | then

an
2 n
u-u=aj+---+a,

which is non-negative since each square is non-negative

and zero if and only if a; = --- = a,, = 0, that if, if and
only if u = 0.

ax b1
Symmetry If u=| : | ,v=| : | then

an by,

uw-v=a1by+---+apyb,=bra1+---+bpa, =v-u

since for all real numbers a, b we have commutativity of
multiplication: ab = ba.

a by €
Additivity [fu = | © | ,v= ,w= | : | then
an b, Cn
a1 + by c1
(u + 1;) Cw = . =
ay, + by, Cn

(a1 + bl)Cl + -+ (an + bn)cn =

(arc1 +bicr) + ... (ancn + bucy)
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= (a1c1+- - Fancy)+(brer+- - +bpen) = ww+tv-w.

Essentially additivity holds because multiplication dis-
tributes over addition in R.

ay bl
Homogeneity If u = , U = and y € R
an b,
then
yai b1
(yu)-v=| : :
Yan by,
= (ya1)br + -+ (yan)b)n = y(ar1br) + - - + y(anbn)

=7(a1by + - + apb,) = y(u - v).

Essentially homogeneity holds since multiplication in R
is associative.

2. (u,yv) = (yv,u) =

")/<’U, u> = 7<v,u> = *’y(u,v).

3. (u,v+w)=(v+w,u) =

(v, u) + (w, u) = (v,u) + (w, u)
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(u, v) + (u, w).

w1y
4. Positive definite Let w = . Then (w, w) =

Wn

) = Wy + - -+ apwW,  (5.1)
Wy, W,
Each w;w; is non-negative. Since c; > 0 also o, w;w; >
0 and zero if and only if w; = 0. Then each term of (5.1)
is non-negative. Therefore, (w,w) is non-negative and
zero if and only if each term is zero, if and only if w; = 0
for all 4, if and only if w = 0.

U1
Conjugate Symmetry Suppose u = and v =
Un,
U1
. | . For each term we haveq;u;v; = o;u;0; =
Un,

o v;u; since «; is real. This implies that (v, u) = u, v).

Additivity in the first argument This holds since multi-
plication distributes over addition in F.

Homogeneity in the first argument

This holds since multiplication is associative and commu-
tative: For each term we have

ai(yui)vi = ai[y(uv;)] =

(i) (uwivi) = (yvau)(uivi) = v[ag (wv;)].

5. Positive definite

(u,u) = (S(u),S(uw))grp > 0 since {, ) is an inner
product and is equal to zero if and only if S(u) = 0. How-
ever, S is an invertible operator and therefore S(u) = 0
if and only if u = 0.
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Conjuagate symmetry
(S(u), S())erp = (S(v),S(u))prp =

<u’ v> =

(v, u).
Additivity in the first argument
(u4v,w) = (S(u+v), S(w))grp Since S is linear and
(, Ygrp is additive in the first argument we have
(S(u+w),S(w))erp =
(S(u) + S(v), S(w))prp =
(S(u), S(w))prp + (S(v), S(w))prp =
(u, w) + (v, w).

Homogeneity in the first argument

By the linearity of S and the homogeneity of (, )gsp in
the first argument we have

(vu,v) = (S(yu), Sv))erp = (vS(u), S(v))Erp

Y(S(u), S())erp = v{u,v).

6. Positive definite

Let A have entries a;;. The (¢,7)—entry of (A, A) is

n
E QijQij
Jj=1

It follows that (4, A) = >7i°, 77, a;;a;;. Since each
a;;a@; > 0 (A, A) > 0. A term a;;a;; = 0 if and only
if a;; = 0 and therefore the sum is zero if and only if
A =0y

Conjugate symmetry

The (j, j)—entry of A" B is Y1 | a;;b;; and therefore
(A, B) is

DD by

i=1 j=1
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In a similar fashion

=D but

i=1 j=1

Since a;;b;; = b;;a;; the conjugate symmetry follows.
Additivity in the first argument

This follows from the formula and the fact that multipli-
cation distributes over addition in [F.

Homogeneity in the first argument

This follows from the formula and the fact that multipli-
cation is associative in F.

7. (, ) is an inner product.

Throughout u = (w1, u2),v = (v1,v2), w = (w1, ws)
with w1, v, wy € V7 and usg, vo, wo € V5.
Positive definite

Assume (u,u) = (u1,u1)1 + (U2, us)o. Each of these
is non-negative. Moreover, we get zero if and only if
(w1, u1)1 = (uz,u2)2 =0

if and only if
u; = 0V17u2 = 0V2-

Conjugate symmetry

(u,v) = (u1,v1)1 + (U2, V2)2 =

(v1,u1)1 + (v2, u2)2 = (V1,u1)1 + (V2, U2)2

= (v, u)

Additivity in the first argument

<u+v,w) = <U1 +v1,w1>1 + <UQ +v2,w2>2 =

(w1, wi)1 + (v1,wr)1 + (U2, wa)2 + (Va, Wa)o =
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({(u1,w1)1 + (U2, wa2)2) + ((v1,w1)1 + (v2, wa)2)

= (u,w) + (v, w).

Homogeneity in the first argument

(yu,v) = (yur,vi)1 + (Yu2,v2)2 =

v{u1,v1)1 + y(ug, v2)2 =

Y((u1, v1)1 + (uz,v2)2) = y(u, w).

8. Assume thatv = c;v1+---+c,v, = 0. Thenv-v; =
0 for all j. Using additivity and homogeneity in the first
argument we get

c1(v1,v5) + -+ cp{vp,v;) =0

C1

This implies that is in the null space of the matrix

Cn
A. Tt immediately follows that (vq,...,v,) is linearly
independent if and only if null(A) = 0 if and only if A
is invertible.

9. If ¢; > 0 for all 4 then (, ) is an inner product by
Exercise 4. Suppose some ¢; < 0. Then (e;,e;) < 0
which contradicts positive definiteness. Thus, if (, ) is an
inner product, all ¢; > 0.

10. First note that if f,g € V then spt(f) U spt(g) is
finite so there are only finitely many non-zero terms in

> ien [ (D)g(7).
Positive definite

Let I = spt(f). Then (f,f) = >,c; f(i)?. Each
f(@)?> > 0 for i € I. Therefore (f, f) > . Moreover
we obtain a positive sum unless I = (), that is, unless f is
the zero function.

Symmetry

This follows since for all i € spt(f) Nspt(g), f(i)g(i) =
g(2) f (i) since multiplication of real numbers is commu-
tative.
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Additivity in the first argument

Set J = [spt(f)Nspt(h)|U[spt(g)Nspt(h)]. Let f,g,h €
V and ¢ € J. Then

[£(i) + g(@)]n(i) = F()h(i) + g(i)h(i)
since multiplication distributes over addition in R.

It then follows that (f+g, k) = >, ;[f (i) +g(i)|h(i) =
2 iing LF(O)N(E) + g(i)h(i)] =

> f@h() + Y g(@)h() = (f.h) + (9. h).

icJ ieJ

Homogeneity in the first argument

Set I = spt(f) N spt(g). Then (vf,g) =
> v f@)g(i) =D y(fi)g(i) =
icl iel

vy F()g(i) = (1 9)-

il
11. This is a real inner product.
Positive definite

Since (v,v) is a non-negative real number, (v,v)g =
(v, v) and so is non-negative and equal to zero if and only
ifv=0.

Symmetry

Suppose (v, w) = a + bi with a,b € R. Then (v, w)r =
a. We then have (w,v) = (v,w) = a+bi = a — bi.
Thus, (v, w)r = a.

Additivity in the first argument

Suppose (u, w) = a+bi, (v, w) = c+diwitha, b, c,d €
R. Then (u, w)r = a, (v, w)g = c.

(u 4 v, w) = (u,w) + (v,w) =
(a+bi) + (c+di)=(a+ )+ (b+ d)i.

Thus, (u + w, )g = a + b as required.
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Homogeneity in the first argument

Assume (v, w) = a+ bi so that (v, w)g = a. Lety € R.
Then (10, w) = (v, w) = 1(a+ bi) = (10) + (1)i. I
follows that (yv, w)r = va = y(v, w)g.

5.2. The Geometry of Inner
Product Spaces

1. Let v,w € u' so that (v,u) = (w,u) = 0.

By additivity in the first argument we have

(v+w,u) = (v,u) + (w,u) =0+0=0.

Thus, v + w € u=t.

Now assume v € F. By homogeneity in the first argument
we have

(yv,u) = y(v,u) =5 x 0=0.

So, if v € wt and 7 is a scalar then yv € ut.

2. Define amap f,, : V — F by fu(v) = (v,u).
Since ( , ) is additive and homogeneous in the first ar-
gument, the map f,, is a linear transformation. Assume
u # 0. Then for a € Efu(ﬁu) = a and conse-
quently, f,, is surjective. Now by the rank nullity theorem,
dim(Ker(fu) = n — 1. However, Ker(fy,)) = u™.

3. Assume w € WNW*. Thenw L w thatis, (w, w) =
0. By positive definiteness, w = 0.

4 {ax® +bx+c, x>+ +1) = fol(a:c2 +bx +c)(z? +
x4+ 1)der =

1
/ [az* + (a +b)2> + (a+b+c)2® + (b+c)x +cdr =
0

5 4 IS 2

(a%—l—(a—!—b)%—!—(a—!—b—!—c) 3 —|—(b—|—c)% + ezl =
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a a+b a+b+c b+ec
-+ +

5 4 3 2
This reduces to finding the solutions to the homogeneous
equation
47a + 65b + 110c = 0.
A basis for (22 + 2 + 1)+ is (3222 — 1,822 — 1),
5. d(A,B) =

VAA—B,A-B). A - B =
<—4 —3)
3 —4)

We have to compute the trace of the product (A —

25 0
B)"(A—-B) = (0 25) . Thus, d(A, B) = 5V/2.
6. (A, I5) is equal to the trace of A which is the same
as the trace of A. So, the orthogonal complement to I
consists of all matrices with trace zero. A basis for this is

( 0 1 0 0 1 0 )
0 0/’\1 0/’\0 -1/7
7. The subspace of diagonal matrices in M5 (R) has basis

G o) 2

1
The orthogonal complement to (

0 8) consists of all

. 0 a
matrices ( 12) . The orthogonal complement to
az1  a22

the matrix 00 consists of all matrices @i 12 .
0 1 a1 0

Thus, the orthogonal complement to the space of diagonal
matrices in Mao(R) consists of all matrices with zeros on
the diagonal.

8. d(2?%,x) =

(22 —x, 2% —2) = fol(m2 —x)%dx =

(22 —z, 2% — ).

1 15 xT fL‘,
fo (2t — 223 + 22)dx = [ —2% + ?H(l) =
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d(z?, z) = 1 @
15 1
9. (u— ﬁﬁ}’ﬁ?vw) = (u,v) — <”1:’|1"2> (v,v)
(u,v) — 2t || v 2= (u,v) — (u,v) = 0.

10. (u 4+ v,u + v) = (u, u) + (u,v) + (u,v) + (v, v).

(u—v,u—v) = (u,u) — (u,v) — (u,v) + (v, v).

(u +iv,u +iv) = (u,u) — i{u,v) + i(u,v) + (v, v).

(u —iv,u —iv) = (u,u) + i{u, v) — i(u,v) + (v,v).

We then have

lwto ||* = [lu—v |* +i | utiv | =i | u—iv |[*=

(<u7u> - <u7u> + Z<u7'u'> - Z<uvu>)+

((w,v) = (—(u, v)) —*(u,v) — i*(u,v))+

(u,v) + (u,v) +i%(u, v) +i*(u, v)+

(<’U,’U> - <’U,’U> +i<v7v> - i<’U,’U>) -

4(u,v).
Z1 Y1
s V2,
11. Setx = . | andy = . Apply Cauchy-
* Vnyn
Schwartz:
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(z-y)?<(z-2)(y-y).
The left hand side is

(Z ziyi)?

while the right hand side is

=D wd).
i=1

i=1

12. a) Since d(u,v) = +/(u—v,u—v) we have
d(u,v) > 0 and equals zero if and only if u — v = 0, if
and only if u = v.

b) This follows since (—,
x.

—x) = (x,x) for any vector

¢) d(u, w) =[| u —w [|=[| (u —v) + (v —w) |
<JJu—v | + || v—w ||= d(u,v)+d(v, w) by Theorem
(5.5).

13. Denote the 2 x 2 identity by I5 and the 2 x 2 all one
matrix by Jo. Easy calculations give || I> ||= v/2,

| J2 [|= 2v/2 and (I, Jo) = 2. Thus,

(I, Jo) 2 2 1

LR v22v2 4 2

The angle is 7.

4. If | u+v ||=|| w || + || v | then w L v. Then
(cu) L (dv). Then by the general Pythagorean theorem

| cutdo [P=] cu | + || dv [|P=¢* [ w [|* +d* | v ||*.

15. It is a consequence of the assumption that || w ||;=
|| w || for all vectors w. Then || u + v ||?=

| w+ v |3 . It then follows that

2(u,v)1 = 2(u,v)y
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and so we get that ( , )1 and (, )2 are identical.

16. Let a be the scalar such that z = y — ax is orthogonal
tox. Theny = ax+z and (y,y) = (ax+z,ax+ 2) =
la|? + (z,2z) > a®. On the other hand, (y,x)(z,y) =
(ax + z,z){x,ax + 2) = aa = |a|?.

5.3. Orthonormal Sets and the
Gram-Schmidt Process

(wa,x1)

wrwr L1 Then

1..’132:’11)2—

(wa, 1)

<332,-’IJ1> = <’w2 - (a: z $1,331> =
(wa, @1)
(wa, x1) (scl,a:1>< 1,T1)

Making use of additivity and homogeneity in the first ar-
gument and the fact that ; | x5 we get

(ws, 1)
<$1,3’31>

_ <w3’ w2>
(w2, T2)

<w37w1> = <’w3 - $2,$1> =

<’w3>w1>

2y (@) = (s, —(ws,z1) = 0.

(w3, @1)—

(w3, x2) is computed in exactly the same way.

3. Letu € Uandx € W, Since U ¢ W,u L =x.
Since w is arbitrary, * € U+. Since x is arbitrary we
have W+ c U*.

4. Let (w1, ..., w;) be basis for W and extend to a basis
(w1, ..., w,) for V. Apply the Gram-Schmidt process to
obtain an orthonormal basis (21, . . . , &, ) such that for all
., ;) = Span(ws, ..., w;). Then,
., r) is an orthonormal basis of TV.

j < n,Span(xq, ..
in particular, (x1, ..
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5.3. Orthonormal Sets and the Gram-Schmidt Process 51
Clearly Span(wyy1,...,w,) is contained in W~ and
has dimension n — k. Thus, dim(W+) > n — k. Since k A,
W N W+ = {0},dim(W+) < n — k. Consequently we Z [{w, 0i)|” = Z el
have equality. =l =t
5. This follows from the fact that W N W+ = {0} and On the other hand
dim(W) + dim(W+) = n.
n k
6. Assume dim(V) = n,dim(W) = k. Then | ||?= Z ;]2 > Z|C_‘2
dim(W+) = n—k by Theorem (5.11). By another appli- Pl v Pl '
cation of Theorem (5.11) we get that dim((W+)1) = k.
On the other hand, W C (W)= Since they have the y, get equality if and only if ¢ 41 = - - = ¢, = 0 which
same dimension we get equality. occurs if and only if w is in the span of (vy,. .., vg).
T.letx =u+wec U+ Wandy € UL N W=, Then 0 b
(,y) = (u+w,y) = (u,y) + (w,y) =0+ 0= 0. 11. JQJ- consists of all matrices (C d)

Thus, Ut N W+ C (U + W)L

On the other hand, since U ¢ U + W, (U + W)+ C
U+ by Exercise 3. Similarly, (U + W)+ C W+. Thus
(U + W)+ c U+ nW+ and we have equality.

Now apply the first part to U+ + W+:

Ut+whHt=whHrtrnwhHt=vuvnw.

It now follows from Exercise 6 that (U N W)+ = U+ +

W+,
8. For each j, Span(ws,...,w;) = Span(vi,...,v;).
ayj
This implies that [w;] s has the form aéj . Therefore,
0

the change of basis matrix from B to B/, M, (B, B') is
upper triangular. Reversing the roles of the bases, it also

follows that M, (B', B) is upper triangular.
9. (L,z — 5,2 —z+ §).

10. Extend (vy, .. ., vy) to an orthonormal basis of V. Set
(u,v;) = ¢; sothat w = ¢1v1 + - -+ + ¢, v,,. Then
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such that a + b + ¢ + d = 0 and has basis

((O 0 ) ’ <1 0) ’ <(] 1>) Applying Gram-

Schmidt to this basis we obtain the following orthogonal

basis:
(F (B (),
0 0/)'\-1 0)'\3 -1

The first matrix has norm /3 the second has norm \/%

and the last has norm \/% . Dividing the respective vectors
by these numbers gives an orthonormal basis.

12. Set a; = (x,v;),b; = (y,v;). Since (v1,...
an orthonormal basis we have

, Up )18

n n
T = E av;, Yy = E biv;.
im1 i—1

Again, since (v1, ..., v,) is an orthonormal basis,

n

(@oy) =D aibi = (x,0:)(y, vi).

=1
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5.4. Orthogonal Complements
and Projections

2 -1
. 3 _ -1
1. Projw(u) = 5 , Projy(u) = 1
3 1
. 0 1 . 1 0
2. Projw (J2) = (1 O) , Projy o (J2) = <0 1)
3. Projw(a?) = 322 — 22 + 5.
5
4.2,
/30
5. 48
6. 245

7. 3=(—2027 + 48z + 6).

8. Extend B to an orthonormal basis B’ = (w1, ..., w,).
We need to show that Qw;]s = [w;]s for i < k and
0, if i > k. Since S is an orthonormal basis, for any
two vectors u, v we have (u,v) = [ul]s - [v]s. Now for
1 < i < j <k wehave (w;,w;) = 0 which implies
that (w;]s - [w;]s = 0 and [w;]s - [w;]s = 1. This im-
plies that A*" [w;]s = e; the i*" standard basis vector of
R™. Whence Q[w;]s = AA"[w;]s = Ae; = [w;]s as
required. On the other hand, if 1 <i <k, k+1<j<n
then A" [w;]s = 0,, and, consequently, Q[w,]|s = 0.

0. Qtr — (AAtr)tr _ (Atr)trAtr = AA" = Q, SO
Q is symmetric. Let v € V and write v = w + u where
w € W,u € Wt. Then ProjZ,(v) = Projw(w+u) =
Projw (w) = w = Projw (v). It follows from this that
Q? = Q since Q is the matrix of Projy, with respect to
S

10. Let u, v be in V. As stated in Exercise 8, (u,v) =
[u]s - [v]s. Now suppose w € W = Range(T) and
u € Ker(T). We claim that (w,u) = 0. By the above
remark it suffices to show that [w]s - [u]s = 0 which is
equivalent to [w]4 [u]s = 0. Since w € Range(T') there
exists a vector v € V such that w = T'(v). Then [w]s =
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[T(v)]s = Qv]s- Since u € Ker(T),Q[u]s = 0,,. We
now use this to compute [w]%[u]s =0 :

[’U}terT [U}S

(w5 [u]s = (Q[v]s)"[u]s =

= []§ (Qluls) = [v]§ 0, = 0,,.

It now follows that W' = Ker(T) C W+. However, by
the rank nullity theorem dim(W’) = n — dim(W). By
Theorem (5.11), dim(W+) = n—dim(W) and therefore
W' =Ww-=.

Now let w € W. It remains to show that T'(w) = w.
Since Q2 = (@ it follows that T2 = T. Let u € V such
that T'(u) = w. Then T(w) = T?(u) = T(u) = w.

11. Assume W L U andlet v € V. Set w = Projw (v).
Then w € W. Since w L U it follows that Projy (w) =
0. Conversely, assume Projy o Projw = Oy_yv. Let
w € W. Then Projw(w) = w. Then Projy(w) = 0
which implies that w € Ker(Projy) = U~. Since w is
arbitrary we have W C U~ and therefore W L U.

12. Let w € W,v € W+ such that u = w + v.
Then Projw (v) = w and (Projw (u), Projw(u)) =
(w,w). On the other hand, since w L v by the
Pythagorean theorem (w,u) = (w + v,w + v) =
(w,w) + (v,v) > (w,w). Moreover, we get equality
ifand only if v = O if and only if u = w € W.

13. Let w € W,v € W+ such that u = w + v.
Then dist(u, W) = (v, v). By the Pythagorean theorem,
(u,u) = (w+v,w+ v) = (w,w) + (v,v) > (v,v).
Moreover, we have equality if and only if w = 0 if and
only ifu =v € W+,

5.5. Dual Spaces

is invertible with inverse

S = N =
_ O W N
N O = =
— =W N
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-5 3 0 1 which clearly inplies that T'(v) # Oy . Since v is arbi-
-1 1 -1 s = i

 This implies that the sequence Fra?ry we can conclude that Ker(T) {0y} and T is
-2 1 0 1 injective.

5 -3 1 -1
of column vectors are a basis for R*.

Set

g1 =—-5f1+3f2+ fa
g2=—fi+fo—f3
g3=—=2f1+ fo+ fa

ga=5fi=3f2+ f3—fa

(91, 92, g3, g4) is the basis of (R*)’ which is dual to B.

2. Since dim(L(V,W)) = dim(L(W’, V")) it suffices to
show that the map T' — T” is injective. Let T' € L(V, W)
be a non-zero map. We need to show that 7" is non-zero.
Since T is non-zero there exists v € V such that w =
T(v) # Oy . Extend w to a basis (w = wi,..., W)
for W. Define g : W — F by g(>_1", c;w;) = a;. Now
[7(9)](v) = g0 T)(v) = g(T(v)) = g(w) = 1. Thus,
T'(g) # Owr.

3. Assume T is one-to-one and let f € V' be non-zero.
Let (vy,...,v,_1) be abasis for Ker(f) and extend to a
basis (v, ..., v,) for V such that f(v,) = 1. Set w; =
T(v;),1 < i < n. Since T is one-to-one, (w1, ..., w,)
is linearly independent. Extend to a basis (w1, ..., wy,)
fo W. Define g : W — F by g(> i~ a;w;) = ay. Then
T'(g)(v1) = (goT)(v1) = g(T(v1)) = g(wr) = 1.
Also, for i > 1,T'(g)(v;)(g o T)(v;) = g(T(v;)) =
g(w;) = 0. Thus, T'(g) = f and T” is onto.

Conversely, assume that 7" is onto and let v € V be a
non-zero vector. Let (v = vy,...,v,) be a basis of V.
And let f : V — F be defined by (>, a;v;) = ai.
Since 7" is onto there exists g € W' such that T"(g) = f.
Then (T7(g))(v) = f(v) = 1. Whence g(T(v)) = 1
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Now assume that T is onto and let g € W’ be non-zero.
Then there exists w € W such that g(w) = 1. Let (w =
w1, ..., W,y,) be a basis for W such that (ws, ..., w,,)
is a basis for Ker(g). Since T is onto, there exists v €
V such that T'(v) = w. Now [T"(g)](v) = g(T(v)) =
g(w) = 1. In particular, 7"(g) is not the zero vector in
V', equivalently, g is not in Ker(T”). Since g is arbitrary
in W it follows that T” is injective.

Conversely, assume that Range(T) # W. Let
(w1, ..., wy) be a basis for Range(T) and extend this to
a basis (wyq, ..., w,,) for W. Now define g : W — T by
g(>°" | a;w; = a,,. Note that Range(T) C Ker(T).
This implies that T'(g) = Oy~ and therefore T is not
one-to-one.

4. This follows immediately from Exercise 3.

5. Set k = rank(T) and let (w1, ..., wy) be a basis for
Range(T). Extend to a basis By = (w1,...,w,,) for
W and let By = (g1, .-, 9m) be the basis of W’ dual
to By . We claim that (77(g1),...,T"(gx)) is a basis for
Range(T").

Suppose j > k. Then Range(T) C Ker(yg,)
and therefore 7"(g;) = Oys. Thus, Range(T’) C
Span(T'(g1),--.,T'(gr)). Since each T'(g;) is in
Range(T") we have equality. It remains to show that
(T"(g1),-..,T"(gx)) is linearly independent.

For 1 < i < klet v; € V such that T'(v;) =

w;. Then (vi,...,v) is linearly independent since
(T'(v1),...,T(vr)) = (w1,...,wy) is linearly inde-
pendent. Extend to a basis By = (vi,...,v,) where
(Vgt1,--.,0,) is a basis for Ker(T). Let By, =

(f1,--., fn) be the basis of V'’ which is dual to By . We
claim that 7"(g;) = f; from which the result will follow.

Suppose j > k. Then v; € Ker(T) and [T"(g;)](v;) =
0. Suppose j < k,j # . Then [T"(g;)](v;) =
9{(T(vj)) = gi(w;) = 0. Finally, [T"(g;)](vi) =
9i(T'(vi)) = gi(w;) = 1.
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6. Assume dim(V) = n,dim(W) = m and rank(T) =
k. By the rank-nullity theorem, nullity(T) = n — k. By
Exercise 5, rank(T’) = k. Again by the rank-nullity
theorem, nullity(T') = m — k. Thus, nullity(T) =
nullity(T”) if and only if n — k = m — k if and only
if n =m.

7. Let v # Oy and (v = vy,...,v,) be a basis for
V and (g1, ..., gn) the basis of V' dual to (v1,...,v,).
Then g1 (v) = 1. Since (f1, ..., fn) is a basis for V' there
exists scalars cq, ..., ¢, such that

g=cfit+ - +cenfn

Then 1 = g(v) = c1f1(v) + ... cnfn(v). This implies
for some i, f;(v) # 0. It then follows that T'(v) # O,.
Thus, T is injective whence an isomorphism by the half is
good enough theorem.

8. Since T is an isomorphism by Exercise 4, T" is an
isomorphism. Since (71, ...,m,) is a basis for (F™) we
can conclude that (T"(m1),..., T (7)) = (f1,.--, fn)
is a basis for V.

9. We give an indirect proof. We first establish the exis-
tence of a natural isomorphism between V and (V')’.

Thus, let v € V. Define a map F,, : V' — F by
F,(f) = f(v). Claim that the map v — F,, is a linear
transformation.

Let v, w € V. We need to prove that Fy, 1, = F)y + F.
Let f € V'. Then Fyiw(f) = flv + w) = f(v) +
f(w) :Fv(f)+Fw(f) = (Fv+Fw)(f)~

Now let v € V, ¢ € F. We need to prove that F,,, = cF,.
Now for f € V' we have Fo,(f) = f(cv) = ¢f(v) =
cFy(f) = (cFu)(f).

Now let v € V be non-zero. We have oftentimes seen that
there exists f € V’ such that f(v) # 0. Then F,(f) =
f(v) # 0. Therefore the linear map v — F, has trivial
kernel and is injective. Since dim(V) = dim((V'), in
fact, this map is an isomorphism.

Now let (F1, ..., F},) be the basis of (V') which is dual
to (f1,...,fn) and let (x1,...,x,) be the basis of V'
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such that F,, = Fj. This sequence satisfies the require-
ments of the exercise.

10. Suppose f,g € U',c € Fand u € U. Then (f +
g)(u) = f(u) +g(u) =0+0 = 0. Since w € U is
arbitrary, U C Ker(f + g).

(cf)(uw) = c[f(u)] = ¢ x 0 =0. Thus, U C Ker(cf)
and U+ is a subspace of V'.

Let (uq,...,ux) be a basis for U and extend to a basis
B = (uy,...,u,) for V.Let (g1, ..., 9gn) be the basis of
V' which is dual to B. Then U+ = Span(gii1,--.,9n)
and has dimension n — k.

11. Since U,W C U+ W it follows that if f € (U+ W)’
then f € U’ N W’. On the other hand, suppose f € U’ N
W' and v € U + W. Then there are u € U, w € W such
that v = w + w. Then f(u + w) = f(u) + f(w) =
04+ 0=0and f € (U+ W)'. Thus, we have equality.

Now suppose f € U',g € W/ and v € U N W. Then
(f+9)(v) = flv) +gv) = 04+ 0 = 0. Thus,
f+g € (UNW)'. This shows that U’ + W’ C (U N
W)'. We complete this with a dimension argument. Let
dim(U) = k,dim(W) = l and dim(U N W) = j. Then
dim(U + W) = k + [ — j. From Exercise 10 it follows
that dim((U + W)*) = n — k — [ + j. By the first part,
UNW’' = (U+W) . Thus, dim(U'NW’) = n—k—I4j}.

Again by Exercise 10, dim(U’) = n — k,dim(W') =
n —[. Then

dim(U'+W') = dim(U")+dim(W")—dim(U'NnW') =

(n—k)+(n—0)—(n—k—1+j) = n—j = dim((UNW)").

12. Clearly = is linear and injective. Since dim((U &
WY) = dim(U & W) = dim(U) + dim(W) =
dim(U") + dim(W') = dim(U’ & W'), 7 is an isomor-
phism.

13. Let f € L(X,F). Then (SoT) (f) =(SoT)

) of=
So(Tof)=S(T"(f) = (S o T)(f).
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14. Let f € U’ and w € U. Then [T"(f)](u) = f(T(u)).
Since U is T—invariant and u € U, T'(u) € U. Since f €
U’ we conclude that f(7'(w)) = 0. Since w is arbitrary,
T'(f)eU'.

15, Let B = (v1,...,v,) be a basis for V' and
B' = (fi,..., fn) be the basis of V' dual to B. Then
My (B, B') = Mz (B,B)"". 1t follows from this that
the operators 7' € L(V,V) and T" € L(V’, V') have the
same minimum polynomial (and elementary divisors and
invariant factors).

16i) Suppose g € Ker(T') and w = T(v). Then
g(w) = g(T(v)) = [T'(g)[v] = 0. Since w is arbitrary,
g € Range(T) and Ker(T') C Range(T)’. On the
other hand, suppose g € Range(T)'. Let v € V. Then
[T'(g)](v) = ¢g(T'(v)). Since T(v) € Range(T) and
g € Range(T')" we have g(T'(v)) = 0. Since v € V is
arbitrary, 7" (g) is the zero vector in V' and g € Ker(T").
Thus, we have equality.

ii) Assume f = T'(g) € Range(T") and v € Ker(T).
Then f(v) = [T"(9)l(v) = 9(T(v)) = g(0w) = 0.
Thus, f € Ker(T)'. Now we can complete this with di-
mension arguments: By Exercise 5, dim(Range(T")) =
dim(Range(T)). By Exercise 10, dim(Ker(T)")
dim (V) — dim(Ker(T)) = dim(Range(T)).

iii) Let v € Ker(T) and f = T’(g). Then f(v) =
[T'(g)](v) = g(T(v)) = g(0Ow) = 0. Since f and v are
arbitrary we have Ker(T) C Range(T"). Once again
we get equality by a dimension argument.

iv) Let w = T(v) and ¢ € Ker(T"). Then g(w) =
g(T(v)) = [T'(g)](v) = 0since T'(g) is the zero vector
in V. This implies that Range(T") C Ker(T")'. Equality
follows from dimension arguments.

5.6. Adjoints
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2. —420x2 + 396z — 60.
1 0
3.Q _J
4. Letv € V and & € X. Then
(TS)(v),z)x = (v, (TS)"(x))v

On the other hand,

(TS)(v), ) x = (T(S(v)),z)x =

(S(v), T*(x))w = (v, S™(T"(2)))v

Thus, forall v € V and € X we have

(v,(TS)"(x))v = (v, (S*T")(x))v

This implies that (T'S)*(z) = (S*T*)(x) forallz € X
whence (T'S)* = S*T*.

5.Letv € V,w € W. Then

<T(’U),’w>v = <U7T*(w)>V =

((T7)" (v), w)w

Since this holds for all w € W we must have (T%)*(v) =
T(v) forallv € V whence (T*)* =T.

6. Assume T'(u) = Aw. Then for all v € V we have

(T = N)(w),v) = 0.

This implies that

(u, (T = Ay)*(v)) = (u, (T = Ay)(v)) = 0.

This implies that Range(T — \Iy) C ut is a proper sub-
space of V. It must then be the case that Ker (T — \Iy/) #
{0} which implies that there exists an eigenvector with
eigenvalue \.
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7. Let w € W and assume that 7*(w) = Oy . Then for
alveV

(v, T"(w))y =0.
Using the definition of 7™ we have for all v € V that
(T'(v), w)w =0

Since T is invertible, in particular, Range(T') = W. This
implies that w = Oy and consequently, 7™ is injective,
whence invertible. Exercise 3 applied to 7T~ ! = Iy, =
T=T yields (T*)~! = (T1)*.

8. Suppose (T*T)(v) = Oy . It then follows that by the
definition of T™ that

(T(v), T())w = (v, (T"T)(v))v = 0.

Since ( , )w is positive definite we can conclude that
T(v) = Oy . However, T injective implies that v = Oy .
Thus, T*T is injective. Since V is finite dimensional it
follows that 7T is bijective.

9. It follows from part i) of Theorem (5.22), if T :
V — W is surjective then T™ is injective. By Exer-
cise 5, (T*)* = T. Now it follows from Exercise 8 that
TT* : W — W is bijective.

10. Letw € U and w € U~. Since U is T—invariant we
have

(T(u), w) = 0.
Making use of the definition of 7" we then get for all
uelU

(u, T* (w)) = 0.
This implies that T* (w) € U~.
11. Suppose (T*T)(v) = 0. Then

(T(v),T(v)) = (v, T*(T(v))) = 0.

By positive definiteness we have T'(v) = 0.
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12. S*(z,y) = (—y, ).

13. Let By be an orthonormal basis of V' and By, be
an orthonormal basis of W. Set A = Mr(By, By ) and
A* = Mp+(Bw,By). By Theorem (5.23), A* = A’
Since rank(T) = rank(A),rank(T*) = rank(A*)
and rank(A) = rank(A") it follows that rank(T) =
rank(T™).

14.  Assume S exists. Then 1 = (v,v1) =
(v1,5*(y)) = (S(v1),y) = (z,y). This proves that
(z,y) = 1. Conversely, assume (x,y) = 1. Let
(x3,...,x,) be a basis for y*. Since (x,y) = 1 # 0,
x ¢ yt so that (z,x9,...,x,) is linearly indepen-
dent. Set ;1 = « and define S : V — V so that
S(v;) = x;. Then S is invertible and S(v;) = &1 = z.
It remains to show that S*(y) = v;. Let 2 < j < n.
Then 0 = (S(v;),y) = (vj,5*(y)). Consequently,
S*(y) = Span(va,...,v,)" = Span(vy)t. There is
then a scalar « such that S*(y) = awv;. However, 1 =
(@,9) = (S(v1),y) = (v1,5"(y)) = (vi,001) = .
Thus, o = 1 as required.

5.7. Normed Vector Spaces

—4 —4 —4
2 2 2
1. = = OO:
ol | S =0 | 2 le=s0 | 2|
-2 -2 -2
4.
3 3 3
—6 —6 —6
b) | =110 o [ l=71 [loo= 6.
2 2 2
—4 3 -7
8
2. Letx = Y= .Thenx—y = 1
2 2 0

Thendi(z,y) =|| z—y 1= 16, do(z,y) =| z—y ||2=
V114, doo (@, y) =[|  — Y [|oo= 8.

3.1
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4. 1) If ¢ = y then d(x,y) =|| 0 ||= 0. On the other
hand, if d(x,y) = Othen || x —y ||= 0, whence x —y =
Osox =1y.

2) This holds since d(y,x) =|| y — = ||=| (-1)(z —
y) ll=1-1llz-yl=lz—-yl=dzuy).
Ddx,z) =[z—-z|| = [[(z-y)+y—2) | < |

-yl +|y-z[=dzy) +dy,=).

T Y1

5. Letx = Y = . If © = O then clearly
Tn Yn

| © |lco= max{|z1],...,|xn|} = 0. On the other hand if

| © ||oo= maz{|z1],...
and x = 0.

,|zn]} = 0 then x; = 0 for all ¢

Let ¢ be a scalar Then || cx |oo=

max{|cz1|,...,|cxn|} = maz{|c||z1],...,|d]|zn]} =
lclmaz{|z1], ..., [zal} = lc| | Z |-

Now | 24+ Y [|eo= maz{|z1+y1],- - -, |Tn + yn|}. Now
lzi + vil < |zl +1yil <[l ® lo + [| y || —co. Conse-
quently, max{|z1 + y1l,-- - |[Tn + Unl} <] ® |oo + ||
Y |l oo-

6. Let B%(x) denote the open ball centered at & with
radius r with respect to the lo-norm and B2° () the open
ball centered at x with radius r with respect to the /-
norm. We must show the following: i) For an arbitrary
point y € B2(0) there is a positive s such that B (y) C
BﬁO); and ii) For an arbitrary point z € B2°(0) there is a
positive ¢ such that B?(z) C B°(0).

i)Sets = % Suppose u € BS°(y). Then || w ||2=||

W
v <yl uey oty = (1)
u
(1) then | = 3= (s = 30)7 + (= )? < 25
2

[y
4

Consequently, || u—1y ||< % Then, || w ||2<| ¥ ||2
prolle — el o,

K23692_SM_Cover.indd 65

21

ii) Assume z = < > € BX(0). Sett = "=IZl= 3pq

22
v

assume v = ( 1) € B?(z). We need to prove that
Vo

v € BX(0). Now [| v [oo=| 2+ (v = 2) [loo<]| 2 [|oo
+ || v — 2 ||oo- Note that || v — z [|[o<|]| v — 2 |2

Therefore, || v [|co<|| 2 [0 JrT*”QzHoo — T+HQZH<><> <r

7. Let {xx}72, be a Cauchy sequence with respect to
L1k

the [;-norm. Assume xj; = . We claim for each

Tnk
i,1 < ¢ < nthat {z;;}32, is a Cauchy sequence in R of
C. Thus, let € be a positive real number. Since {x}72, is
a Cauchy sequence with respect to the [ -norm there exists
a natural number N = N(e) such that if p,q > N then
| ®q —xp 1< e Since || xg—xp (1= 31 [2ig — Tip|
it follows for each 7,1 < ¢ < nand p,q > N that |z;;, —
x;p| < € as required. Since R and C are complete we can
conclude for each i the sequence {x;x };2, converges. Set
Z1

r; = limy_ o X, and set x = . We claim that

xn

limg oo @ = . Toward that objective, assume € is a
positive real number. Since limg_, oo x;x = x; there is a
natural number M; such thatif k > M; then |z; — 2| <
<. Now set M = max{Mj,..., M,} and suppose k >
M. Then k > M; so that |z; — 2| < £ and therefore
| 2 — @ [1= >0, i — 2| < n X £ = €so that
limy_,oo £ = x as claimed.

8. Let {x1}72, be a Cauchy sequence with respect to
L1k

the [.o-norm. Assume x; = . We claim that for

Tnk
each 7,1 < ¢ < n that {z;;}2, is a Cauchy sequence
in R or C. Thus, let € be a positive real number. Since
{z}72, is a Cauchy sequence with respect to the [oo-
norm there exists a natural number N = N (¢) such that if
p,q > Nthen || z;, — @) ||o< €. Since || &y — xp ||cc=
maz{|z1ig — Tip, ..., |Tng — Tnp|} We can conclude for
each 4,1 < i < nand p,g > N that |z;; — ;| < €
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establishing our claim. Since R and C are complete we
can conclude for each ¢ the sequence {x;; } 7> | converges.
Ty

Set x; = limy,_, oo ;% and set x = . We claim that

:L.n

limy oo r = x. Toward that objective, assume € is a
positive real number. Since limg_, o x;r = x; there is a
natural number M; such that if & > M; then |x; — x| <
e. Now set M = max{My,..., M,} and assume that
k > M. Then k > M, so that |z; — z;x| < €. Since this is
true for each 4,1 < i < n it follows that | & — @) |leoc=
maz{|x1 — x1k|,...|Tn — Tak|} < € so that, indeed,
limy oo T = .

9. 1) The relation fo equivalence is reflexive: Take ¢ =
d=1.

ii) The relation of equivalence is symmetric: Assume || - ||
is equivalent to || - ||" and let ¢, d be positive real numbers
such that for every @, ¢ ||  |'<|| = ||< d || « ||'. Then
illzll<l=|'< ¢ | @ | forevery .

iii) The relation of equivalence is transitive: Assume || - ||
is equivalent to || - ||" and || - || is equivalent to || - ||*.
Let a, b be positive real numbers such that for every x,
allz|'<||z|<b]| x| and let ¢, d be positive real
numbers such that for every  wehave ¢ || = ||*<|| = ||'<
dlel

Set e = ac and f = bd. Then for every x,e || @ ||*<]|
zl<flla|"

2_ _ 2_ 92
10. || e1 + ez [|;=]| e1 — ez ||;= 27 . Therefore

2
|| e1 + e2 ||12,+H el — e ||,29:2><2p.

On the other hand, 2(| e; [|2 + || ez ||2) = 4.

If p = 2 then 2 X 27 =2 x 2 = 4 and we have equality.
Conversely, assume we have equality;

2
2x2r =4

so that 2% = 2 so that % = 1and p = 2, as asserted.
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11. Letm = maz{| e1 ||,-..,|| en ||} and assume
T

is in S°. Then | o ||[< D20, || zie; ||
Tn
by the triangle inequality. >\ | || zie; ||= >y @i ||
e; [|< >, m|x;| < nm since |z;| < 1. Thus, S° is
bounded. It remains to show that it is S7° is closed.
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Chapter 6

Linear Operators on Inner Product Spaces

6.1. Self-Adjoint Operators

1. This follows immediately since (S+7)* = S*+T"* =
S+T.

2. (WTI')* =7T* = ~T since v € R and T is self-adjoint.

3) RY = [(T+T)]" = {1+ ()] = §[1°+7] =
R.

S* = (zil-T+T*])* = 3i[-T* + (I*)*] =
—5i[-T*+T| = 3i[-T+T*] = 8.

i) R+iS = [T+ T+ 3*[-T+T"] =
T +TY - 3 [-T+T] =
T+ 4T+ 4T - 1T =T.

iii) If T' = Ry + 457 is self-adjoint then
T* = RT, +(i51)* = RT —|—€Sik = Ry —1i95].

Then T + T* = 2Ry, Ry = [T + T*] = R. Then S; =
T—R1 :T—R:S

4. T* = R —iS. Suppose RS = SR. Then

TT* = (R+1iS)(R—1iS) =
R?+ (iS)R— R(iS) + S* = R* + §* =
(R—iS)(R+1iS)=T"T
and so T is normal.
Conversely, assume that 7" is normal so that T7* = T*T.

Then
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TT* = R?> +i[SR— RS| + S% =
T*T = R* +i[RS — SR] + S

It follows that SR — RS = RS — SR from which we
conclude that 2SR = 2RS, SR = RS.

5. The dimension is n? as a real vector space.

6. Assume (ST)* = ST. (ST)* = T*S* = T'S. Thus,
TS = ST. On the other hand, assume ST = T'S. Then
(ST)* =T*S* =TS = ST.

7. Let B = (v1,...,vy) be an orthonormal basis for V.
Let S(v;) = T(vj) = v for3 < j < m. Set S(v;) =
v, S(v2) = v1; T (v1) = v1 + 203, T(v2) = 2v1 + 3vs.

Since Mg (B, B), My (B, B) are real symmetric the op-
erators S and T are self-adjoint by Theorem (6.1). How-
ever, Mgt (B, B) # Mrg(B,B).

8. | T(v) [P= (T(v),T(v)) = (v,T"T(v)).
Since T is normal, (v,T*T(v)) = (v, TT*(v)) =
(T (v), T*(0)) =[ T*(v) |I*.

9. This follows from Exercise 8.

10. By Exercise 9 we have Ker(T) = Ker(T*). Then
Range(T*) = Ker(T)t = Ker(T*)* = Range(T)
by Theorem (5.22).

11. If TT* = T? then for v € V, (v, TT*(v)) =
(v,T?(v)).  This implies that (T*(v),T*(v)) =

(T*(v), T(v)) from which we conclude that
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(T*(v), T* (v)
pose T(v) =
that by positive definiteness,
Ker(T) < Ker(T*). However,
of Section (5.6), rank(T) =
nullity(T) nullity(T™).
Ker(T) =

— T(v)) = 0 for all v € V. Sup-
0. Then (T*(v),T*(v)) = 0 so
T*(v) = 0. Thus,
by Exercise 13
rank(T*).  Then
= This implies that
Ker(T™).

Set U = Ker(T) = Ker(T*). By Theorem (5.22),
Range(T ) Ker(T*)* = Ker(T)* = Range(T*).
Set W = Range(T). Note that U N W = U N
U+ = {0}. Since dim(U) + dim(U*) = dim(V)
we have V. = U @& W. Let S be T restricted to
W = Range(T) = Range(T*). Note for u,w €
W (Su),w) = (T(u)w) = (u,T"(w)) =
(u, S*(w)). Since T*(w) € W it must be the case that
S* is the restriction of T to W. It now follows that
S2 = SS*. Since S is invertible, S = S*. We have
therefore shown that T restricted to W = Range(T)
is equal to T restricted to W. However, T restricted to
U = Ker(T) is equal to T* restricted to U (both are the
zero map). We can now conclude 7" = T and T is self-
adjoint.

12. Let U = Ker(T) and assume that U is proper in V.
By Exercise 9, Ker(T*). = U Since U is T*—invariant
by Theorem (5.22) it follows that U~ is T—invariant.
Since T is nilpotent and 7" leaves U~ invariant, Ker( L)
is not just the zrero vector. But this contradicts UNU+ =
{0}. Thus, U = V.

13. (T — My)* = T* — Xy Since T and T* commute
and Ay and Al commute with all operators, T' — Ay
and T* — AIy commute and 7' — Ay is normal.

14. i) implies ii). Assume 7" is normal. Then by Exercise
9, Ker(T*) = Ker(T) = W. By Theorem (5,22), U =
Range(T) = Ker(T*)* = Ker(T)t = W+.

ii) implies iii). Let By be an orthonormal basis for

U and By be an orthonormal basis for W. Also, set

k = dim(U),l = dim(W). Then B = BytBw is an

orthonormal basis for V. Let A denote M (B, B) and
- MT* (B, B)

K23692_SM_Cover.indd 68

Iy,

Since T' = Projy,w), A = <
’ Orx

Ole> . Since A is
011

a real symmetric matrix, A* = A "= A Consequently,

T =T.

iii) implies i). A self-adjoint operator is always normal so
there is nothing to prove.

6.2. Spectral Theorems

1. Let aq, ..., a4 be the distinct eigenvalues of 1" and de-
note the minimum polynomial, pr(z) = (x—ay) ... (x—
ag) of T by F(z) and set Fy(z) = F(w) . Also, let

V= {’U S V|T(’U) :Oél"U} and W; = V1EB BV P
Vier® - @ Vssothat V =V, L W,.

Now (x — «;) and F;(z) are relatively prime so there
are polynomials a;(z), b;(x) such that a;(z)(x — a;) +
bi(z)F;(x) = 1. Now let v; € V;,w; € W;. Since
(T — oIy )(v;) = 0 we have
bi(T) fi(T)(vi) =
[ai(T)(T = aily ) + bi(T) fi(T)](vi) =

IV (’UZ) = ;.
On the other hand
bi(T)Fi(T)(w;) =0

Now set g;(z) = agb;(z) F;(x).

Now set g(z) = g1(x) + - - - 4 gs(x). Then g(T') = T*.

2. 1) implies ii). Let aq,...,as be the distinct eigen-
values of T" and set V; = {v € V|T'(v) = a;v}. Then
V=V, L -.. 1 V. Note that the eigenvalues of 7 are
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ai,...,0; and {v € V|T*(v) = azv} = V. Note that
every subspace of V; is T'— and T —invariant.

Now let U be a T'—invariant subspace and set U; = U N
Vi.ThenU = U; L --- L Us. It follows by the above
remark that each U; is T™—invariant and therefore U is
T —invariant.

ii) implies iii). Assume U is T'—invariant. By hypothesis,
U is T*-invariant. Then by Exercise 10 of Section (5.6)
U+t is T—invariant.

iii) implies i). Since U + U+ = V,U N U+ = {0}.
This implies that 7" is completely reducible. Since the
field is the complex numbers this also implies that 7" is
diagonalizable. Now let o, . .., ay be the distinct eigen-
values of T and set V; = {v € V|T(v) = «a;v}. We
then have that V =V}, @ - - - @ V. Further, let V/ denote
Vie---@dVii@dVipi@---@Visothat V=V, V.

Note that if X is a T'—invariant subspace then X = X; &
- Xg where X; = X NV,

Now set W = V;*. Then W = Wy & --- & W, where
W; = W NV, However, W, = WnNV, = {0} and
therefore W C Vj’ . However, since V =V EBVjJ- =V;®
V! we must have dim(W) = dim(V}). Consequently,
le = W = V}. In particular, for i # j,V; C V/, that is,
Vi L V;. Now let B; be an orthonormal basis for V;,1 <
i < sand set B = Bt ...#Bs. Then B is an orthonormal
basis for V' and M¢(B, B) is diagonal. It follows from

Theorem (6.3) that T" is normal.

—_—tr tr
o (4 ) (4 i) (4
(z 4) _(—i 4) _<i
T.
1 1
With respect to the orthonormal basis ((@) , <ﬂ>)

N —1
0
3)"

;z) . Thus, T

V2
the matrix of T is (g

1 1 1
1 1 1

K23692_SM_Cover.indd 69

61
1
5. Assume thatb = c¢. Then | 1 | is an eigenvector with
-2
eigenvalue b = c. Then with respect to the orthonormal
1 1 1
basis (% ,% -1 ,% 1 |) the matrix of

1
1 -2

T is diagonal with diagonal entries a, b, b so that by the
spectral theorem 7' is self-adjoint.

Conversely, assume that 7' is self-adjoint. Since
1 1
1] and | —1] are eigenvectors it must be the
1 0
1 1 1
case that Span(|1],| -1 |)t = Span(| 1 |) is
1 0 -2
1
T'—invariant, equivalently, | 1 | is an eigenvector, say
-2
1
with eigenvalue d. However, 1 = -1 +
-2 0
0
2| 1 |.Applying T' we have
-1
1 0 1
T( y=T(-1|+2( 1 )=T(l-1])+T(| 1 |)
-2 0 -1 0 -1
1 1 0
d ( 1 ] =b-1]+4+c| 1
-2 0 -1
1 0 1 0
d( 1)+ 1 )=b[-1]+c| 1
0 -1 0 -1
1 0 1
d —1)+d 1 1 =bl-1)4+c| 1
0 -1 0 -1
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1 0 0
d=b)[-1]4+d-¢c)[ 1 ]=1]0
0 -1 0
1
Since (| =1 |, | 1 |)islinearly independent, b = ¢ =
0 -1
d.
6. Assume T is self-adjoint. Since
1 1 1
1 1 -1 . .
( NEEIEE ) are eigenvectors it follows
1 -1 -1
1 1 1 1
1 1 -11., —
that Span( NEEIAE )= = Span( 1 )
1 -1 -1 1
1
. . . . =11 . .
is T'—invariant, equivalently, | 1 is an eigenvector
1
for T
1
Conversely, assume B is an eigenvector of 7. by
1

normalizing (dividing each vector by 2) we obtain an or-
thonormal basis of eigenvectors. We need to know that
the corresponding eigenvalues are all real. If they are not
all distinct then since three are distinct and real the fourth
must be real. Therefore we may assume the eigenvalues
are all distinct. Then the minimum polynomial of 7" has
degree four and the eigenvalues are the roots of this poly-
nomial. Since 7T is a real operator the minimum polyno-
mial is a real polynomial. If it had a complex root then it
would have to have a second. However, since three of the
roots are real it must then be the case that the fourth root
is real.

7. 1t T' is self-adjoint we have seen that the eigenvalues
are all real. Assume that 7" is normal and all its eigen-
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values are real. Let 1B be an orthonormal basis such that
M (B, B) is diagonal. Then M (B, B) is a real diago-
—_—tr

nal matrix. In particular, Mp-(B,8) = M1 (B,5)
M (B, B) from which it follows that T* = T.

8. Let ay,...,as be the distinct eigenvalue of S and
b1, ..., B the distinct eigenvalues of T. Set V; = {v €
V|S(v) = ayv}. Then V = V1 @- - - @ V5. Claim each V;
is T—invariant: let v € V;. Then S(T'(v)) = (ST)(v) =
(TS)(v) =T(S(v)) =T(av) = ;T (v).

Now set W; = {u € V|T(u) = S;u} so that V =
W1 @ --- ® W;. Now each W; is S—invariant. Since V;
is T'—invariant it follows that V; = V;; @ - - - & V;; where
Vi; = Vi N W;. Note that if either ¢ # ¢ or j # j'
then V;; L Vi;. Thus, V is the orthogonal direct sum of
Vij,1 <4 <s5,1 < j <t Let B;; be an orthonormal ba-
sis of V;;. Order the collection of bases B;; lexicograph-
ically. Then #; ;B;;is an orthonormal basis of V. Thus,
there exists an orthonormal basis of eigenvectors for each
of Sand T.

9. If T is invertible there is nothing to prove so as-
sume that Ker(T) # {0}. Let a1 = 0,a9,... a5
be the distinct eigenvalues of 7. Set V; = {v €
V|T(v) = a;v}. Since T is normal it is diagonalizable
andV =V ®---@V,.Leti > 1 and v € V,. Then
TF(v) = ofv # 0 and therefore v € Range(TF).
Thus, Range(T*) = Vo @ - - - @ V;. Since Range(T*) =
Range(T), rank(T") rank(T). Then by the rank-
nullity theorem nullity(T*) = nullity(T). However,
Ker(T) C Ker(T*) and therefore we have equality:
Ker(T) = Ker(T%).

10. If T is completely reducible on a complex space then
there exists a basis B = (vy, .. ., v, ) of eigenvectors. De-
fine (3=, awi, Y0 bivi) = >0, a;b;. With respect
to this inner product B is an orthonormal basis. By the
Spectral theorem 7' is normal.

11. Let By be an orthonormal basis of U consisting of
eigenvectors of 7}, and By« be an orthonormal basis of
U+ consisting of eigenvectors of 1), . - Since T, is self-
adjoint, for each vector u € By,T(u) = au for some

02/06/15 3:11 pm



6.3. Normal Operators on Real Inner Product Spaces 63
real number «. Since Tlm is self-adjoint, for each vector c1 a1c1
v € By, T(v) = po for some real number v. sume [u]g = . Then [T'(u)]g = and
Now B = By By is an orthonormal basis of V' consist- Cn QnCn

ing of eigenvectors of 7. Thus 7" is normal. Since all the
eigenvalues are real it follows that 7" is self-adjoint.

12. This is false. Consider the operator which satisfies
T(el) = 617T(62) = 62,T(€3) = 283,T(64) = 264
where e; is the i*" standard basis vector of R* equipped
with the dot product. T is self-adjoint. Now let U =
Span(ey,e3) and W = Span(e; + es, e3 + ey). Then
W is T'—invariant (the vectors e; + e2, es + e, are eigen-
vectors). Moreover, R* = U ® W. However, U+ =
Span(es, eq).

13. If T is self-adjoint then U = Range(T) =
Ker(T)* = W+, whence W = U*. Conversely, as-
sume that W = Ker(T)L. Choose an orthonormal ba-
sis By of U and an orthonormal basis By, of W. Since
U L W it follows that B = By#Byw is an orthonor-
mal basis of V. Now Mr(B, B) is diagonal with di-
agonal entries 0 and 1 from which we conclude that T'
is self-adjoint. Alternatively, the operator 7' is equal to
Projw,w)y- By Exercise 14 of Section (6.1), T is self-
adjoint if and only if W = U+.

14. Since T is skew-Hermitian, 7* = —71'. Assume v is
an eigenvector with eigenvalue o € C\ R. Let v be a unit
vector with eigenvalue o # 0. Then

a = afv,v) = (av,v) = (T(v),v)

Thus, o + @ = 0 which implies that the real part of « is
zero and «v a pure imaginary number.

15. Let B = (v1,...,v,) be a orthonormal basis
of V such that Mp(B,B) is diag{o1,...,an}. As-
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(T(u),u) = arle1]? + ... anlen|? €R.

6.3. Normal Operators on Real
Inner Product Spaces

In all the following S,, is the standard orthonormal basis
of R™.

1. Let T be the operator on R* such that M7 (Sy,S,) =
0O 1 0 O

-1 0 0 O
0 0 0 2
0 0 -2 0

2. Let T be the operator on R* such that M7(S4,S;) =
0O 1 0 O

-1 0 0 0
0 0 0 1
0 0 -1 0

3. By Lemma (6.5) there is an orthonormal basis S =
(v1,v2) and real numbers «, 8 with 5 # 0 such that the

matrix of T with respect to S is A = (g _B> .
(0%

Let A’ = ( “
respect to S. It therefore suffices to prove that there is a
linear polynomial f(x) such that A’ = f(A). Set f(z) =
—x + 20

6) . Then A’ is the matrix of T* with
o

4. Since T is normal it is completely reducible. Since
the minimum polynomial is a real irreducible quadratic
the minimal 7'—invariant subspaces have dimension 2. It
follows that there are T'—invariant subspaces U1, ..., Us
each of dimension 2 such that V = U; L --- 1 U,.
Assume that the roots of pur(x) are a £ 8 with 5 # 0.
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Set A = <g _f> . There are then orthonormal bases
B; of U; such that Mpy, (B;,B;) = A. If we set
B = Bit...8Bs then B is an orthonormal basis of V'
and M1 (B, B) is the block diagonal matrix with s blocks

equal to A.

!
—B
respect to B is the block diagonal matrix with s blocks
equal to A’. As we saw in Exercise 3, there is a real linear
polynomial f(z) such that A’ = f(A). It then follows that
Mr«(B,B) = f(Mp(B,B)) from which we conclude
that T* = f(T).

Now set A’ = ( ﬁ) . Then the matrix of T with
«

5. Since T is completely reducible there are distinct real
numbers «y, .. ., a, and distinct real irreducible quadrat-
ics p1(x),...,pt(x) such that pr(z) = (r —aq) ... (x —
ag)p1(x) ... pi(z). Let the roots of p;(z) be a; + ib;
where a;,b; € R. Also, for 1 < j < s set g;(x) =

L) and for 1 < k < t set by, = “T((f)). Further, for

(z—ay)

1 <j<ssetU; = {v € V|T(v) = ajv} and for
1<k<tsetWy ={v e V|pp(T)(v) = 0}. Then

V=U,L1L.--LU;, LW, L..- LW,

Let &; be an orthonormal basis of U;,1 < j < s and
S}, an orthonormal basis of W, such that the matrix of T’
restricted to W), with respect to Sy, is block diagonal with

blocks equal to Ay, = (ak _abk> .
k

bi
a b . .
K k> . As we have seen in Exercise

Set A}, =
&k <bk ay
3 there is a linear polynomial fi(z) such that A} =

Jr(Ag).

Now, for each j, (z — «;) and g;(x) are relatively prime
and consequently there are polynomials ¢;(x), d;(z) such
that ¢;(z)(z — «;) + dj(z)g;(x) = 1. Set Fj(z) =
d;j(x)g;(x).

Also, for each k,py(x) and hy(x) are relatively prime
and so there are polynomials Cy(x) and Dy (z) such
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that Cy(z)pr(z) + Dp(z)hi(x) =
fi(2) Dy (z) hi ().

Now set f(x) = Fy(z) + -+ + Fs(z) + G(x) + -+ +
Gi(x). Then f(T) = T*.

1. Set G(z) =

6. By Exercise 5 there exists a polynomial f(z) such that
T* = f(T). Since (T*)* = T there is also a polynomial
g(z) such that T' = g(T™*). Now assume that ST = T'S.
Then S commutes with f(7") = T*. Likewise, if S com-
mutes with 7% then S commutes with g(7*) = T.

7. The hypothesis implies that 7" is cyclic. Since T'S =
ST it follows that there is a polynomial f(x) such that
S = f(T). Since pr(z) is quadratic, f(z) is linear which
implies that S € Span(T, Iy ).

8. Under the given hypothesis, there are real distinct
irreducible quadratic polynomials py(z), ..., ps(z) such
that purp(x) = pi(z)...ps(z) and if U; = {v €
Vlp,;(T)(v) = 0} then dim(U;) = 2. Moreover, V =
Uy L --- 1L Us. If U is a T—invariant subspace then
U= (UnNUp)® - -®&(UNUs). It therefore suffices to show
that each U; is S—invariant. Since ST = T'S it follows
that S commutes with p; (7). Assume now that v € Uj.
Then p;(T)(S(v)) = (p(T)S)(v) = (Sp;(T))(v) =
S(p;(T)(v)) = S(0) = 0. Thus, S(v) € U;.

9. Continue with the notation of Exercise 8. It suffices
to prove that S restricted to each U; is normal. However,
this follows from Exercise 7.

10. Under the given hypotheses, 7" is a cyclic operator.
Therefore dim(C(T')) = dim(V') = deg(ur(x)) which
is even.

11.  We claim that dim(C(T)) = 8. Let § =
(v1,v9,v3,v4) be an orthonormal basis such that

1 -1 0 0O
1 1

Mr(S,S) = 00 2 _01 . The vector S(v1)
0 0 1 1

can be chosen arbitrarily. Then S(vs) = T(S(vy1)) —
S(vy1). Likewise, S(v3) can be chosen arbitrarily and

S(vs) = T(S(v3)) = S(vs3).
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12. Since T is skew-symmetric it is normal since T
commutes with —7". Note that for any vector v we have
(T'(v),v) = (v, T*(v)) = (v,—T(v)) which implies
that 2(T'(v),v) = 0. Thus, v L T(v). This implies that
if v is an eigenvector then T'(v) = 0. Since T is invertible
there are no eigenvectors. Thus, a minimal 7'—invariant
subspace has dimension 2. Let p(z) be a real irreducible
quadratic polynomial dividing pp(x) with roots « £ i3
with o, 8 € R, 8 # 0.

Let U be a 2-dimensional T'—invariant subspace of V
such that p(T) restricted to U is the zero operator. Let
S = (u1, u2) be an orthonormal basis of U such that the

matrix of 7" with respect to S is A = (g _ﬁ) . Since
@

T is a skew-symmertic operator the matrix A is skew-
symmetric. But this implies that « = 0 and the roots

of p(x) are purely imaginary.

6.4. Unitary and Orthogonal
Operators

1. Suppose T(v) = 0. Then 0 =|| T(v) ||=] v | .
By positive definiteness we conclude that v = 0 and so
Ker(T) = {0} and T is injective. Since V is finite di-
mensional from the half is good enough theorem 7" is bi-
jective. Letv € V and setw = T~ !(v). Then v = T'(u).

Therefore, | T-1(v) ||=| w ||=|| T(u) || since T is an
isometry. However, T'(u) = v so we have shown that
| T=1(v) ||=|| v || and T~ is an isometry.

2. Let S, T be isometries of V' and let v be an arbitrary
vector in V. Since S is an isometry, | S(T'(v)) ||=||

T(v) || . Since T is an isometry, | T'(v) ||=|| v || .
Thus, || (ST)(v) ||=|| S(T'(v)) |=|| v || and ST is an
isometry.

a
3. Let u be an arbitrary vector and assume [u]s = | :

Cn

so that u = cyv1 + -+ + ¢, v,. Then
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TwlP=Y"le l?-
j=1
By the definition of T, T'(u) = >_7_, Ajc;jv;. Then

IT(w) 7= 11 Aje IIP=
j=1

n n
SN e I1P=D les IP=llw |
j=1 j=1

4. We recall that for a real finite dimensional vector space
and S an orthonormal basis, M+ (S,8) = Mr(S,8)".
So, assume 7' is an isometry. Then T = T-! whence

A7l = M7p-1(S8,8) = Mp«(S,8) = At

Conversely, assume A~! = A, Since A~! =
Mrp-1(8,8) and A" = M (S,8S) we can conclude
that T—! = T* and therefore T is an isometry.

5. Let S be the operator such that S(u;) = v;. Then S
is a unitary operator and, consequently, M g(S1,S71) is a
unitary matrix. However, M., (S2,81) = Mg(S1,81)
and so the change of basis matrix, M, (S2, S1), is a uni-
tary matrix.

6. Let S be the operator such that S(u;) = v;. Then S
is an orthogonal operator and M g(S1, S1) is an orthogo-
nal matrix. However, My, (S2,81) = Mg(S1,81) and
consequently, M, (S2, S1) is an orthogonal matrix.

7. Let V = C"™ equipped with the usual inner product,
S be the operator on V' given by multiplication by A and
let S = (e,...,e,) be the standard (orthonormal ba-
sis). Assume AA" = A" A. Since Mg (8,8) = ar
it follows that S is normal. By the complex spectral the-
orem there exists an orthonormal basis S’ consisting of
eigenvectors for S, equivalently, so that Mg(S’,S’) is a
diagonal matrix. Set Q = My, (S’,S). By Exercise 5,
Q is a unitary matrix. Then Q1 AQ = Mg(S',8’) is a
diagonal matrix.

Conversely, assume there is a unitary matrix () such
that Q' AQ is diagonal. Let T be the operator such
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M7 (S8,8) = Q. T is a unitary operator and therefore
ifT'(e;) =u;,S’ = (u1,...,u,) is an orthonormal ba-
sis. Moreover, the vectors u; are eigenvectors for S and,
consequently, by the complex spectral theorem S' is nor-
mal, that is, SS* = S*S. Since A = Mg(S,S) and
A" = Mg+ (S, S) it follows that AA" = A" A.

8. Let V = R"™ equipped with the dot product, let .S be
the operator on V' giben by multiplication by A and let
S = (e1,...,ey,) be the standard (orthonormal basis).
Assume A = A'". Since Mg-(S,8) = A" it follows
that S is self-adjoint. By the real spectral theorem there
exists an orthonormal basis S’ consisting of eigenvectors
for S, equivalently, so that M g(S’,S’) is a diagonal ma-
trix. Set ) = My, (S',S). By Exercise 6, () is an orthog-
onal matrix. Then Q" AQ = Q~1AQ = Ms(S',8') is

a diagonal matrix.

Conversely, assume there is an orthogonal matrix () such
that Q" AQ = Q' AQ is diagonal. Let T be the oper-
ator such M¢(S,8) = Q. T is an orthogonal operator
and therefore if T'(e;) = u;,S" = (u1,...,u,) is an or-
thonormal basis. Moreover, the vectors u; are eigenvec-
tors for .S and, consequently, by the real spectral theorem,
S is self-adjoint, that is, S* = S Since A = Mg(S,S)
and A" = M+ (S, 8) it follows that A" = A.

9. Assume 7' is a real isometry. Since TT* = T*T =
Iy it follows that 7' is a normal operator. Conse-
quently, T" is completely reducible and we can express
V as an orthogonal sum U; L --- L U, L W; L
.-+ L W, of T—invariant subspspaces where dim(U;) =
1, dim(Wy) = 2 and T restricted to W}, does not contain
an eigenvector. Moreover, there is an orthonormal basis of
Sy of Wy, such that the matrix of T restricted to W, with
o _B’“> with B, > 0.

Br o

Let u; € Uj; be a vector of norm 1. Since U; is
T'—invariant, in particular, u; is an eigenvector of 7. Sup-
pose T(u;) = ayu;. Then 1 =| u; =] T(uy) [|I=|
aju; ||= la;| || u; [|= |a;|. Thus, a; = £1.

respect to Sy has the form (

Finally, assume that S = (v, vax). Then T'(v1g) =
Qv + Brvak. Since T is an isometry
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=] v [P=] T(vw [I*=

| crvig + Brvak ||*= of + BE.

Since B > 0 there exists a unique 0,0 < 0 < 7
such that ay, cos Ok, B = sin 0. Now by setting
S = (u1,...,us)iS1t. .. 4S; we obtain an orthonor-
mal basis of V' and the matrix of 7" is block diagonal
with entries a;,1 < j < s and 2 x 2 blocks A

cos 0y,
sin Oy
Conversely, assume that there exists an orthonormal ba-

sis S such that Mp(S,S) is block diagonal and each
block is either 1 x 1 with entry 1 or 2 X 2 of the form

cos —sinb
sin 0

Assume the basis has been ordered so that the first s

—sin 0y,

)forlgkzgt.
cos 0y,

) for some 6,0 < 0 < 7.
cos 0

blocks are 1 x 1 and the remaining blocks, Ay, ..., A; are
cos 0, —sin 0,
2 x 2and A = .S
and suppose Ay, (sm 0, cos by ) uppose
S = (uy,...,us)iS1t. .. 4S; where S = (vik, vVar)
consists of two orthogonal unit vectors. By our
assumption on the Mrp(S,S) T(u;) = aju;

where a € {—1,1}. Also, T(vix) = cos Opviy +
—sin Opvi1r + cos Oivo.
Then T'(Sk) (T(v1g), T(veg)) is an  or-
thonormal  basis  for  Span(vig,ver).  Thus,
(T(w1),...,T(us))$T(S1)8 ... 47(S;) is an orthonor-
mal basis of V and T’ is an isometry.

sin Hkvgk, T(’ng)

10. If T is an isometry then 7T = TT* = Iy. If T
is self-adjoint then 7% = T and therefore T? = Iy .
It follows that the minimum polynomial of T' divides
2?2 —1 = (z — 1)(z + 1). Consequently, the eigenval-
ues of 7" are all +1. Since T is self-adjoint there exists
an orthonormal basis S such that M1 (S, S) is diagonal.
Since the eigenvalues of 7" are all 1 the diagonal entries
of Mp(S,S) are all +1.

11. Assume that 7" is a self-adjoint operator. Then there

exists an orthonormal basis S = (vy, ..., v,) consisting
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of eigenvectors of T. Moreover, if T'(v;) = ajv; then
aj € R. Suppose now that 7% = Iy,. Then the minimum
polynomial of 7" divides 22 — 1 and all the a; € {1, —1}.
Then (T'(v1),...,T(vy,)) is an orthonormal basis and T'
is an isometry.

Conversely, assume that 7" is an isometry. It follows from
Exercise 10 that T2 = Iy,.

12. Let T be the operator on C? which has matrix

<é (1)> with respect to the standard basiis.

13. Assume U is T'—invariant. Since 7T  is an isometry, by
Exercise 1, T is bijective. In particular, T restricted to U
is injective and since U is T'—invariant, 7" restricted to U
is bijective. Assume w € U+ and u € U is arbitrary. We
need to prove that T'(w) L w. Since T restricted to U is
bijective there exists v € U such that T'(v) = u. Now

(T(w),u) = (T(w), T(v)) = (I"T(w),u).
Since T is an isometry, T*T" = I, and therefore
(T*T(w), u) = (w,u) = 0.

14. Assume A is upper triangular and a unitary matrix.
Then the diagonal entries of A are non-zero since A is
invertible. The inverse of an upper triangular matrix is
upper triangular. On the other hand, since A is unitary,
A= = A" is lower triangular. So A~! is both upper
and lower triangular and hence diagonal and therefore A
is diagonal.

15. Let (w1, ..., u;) be an orthonormal basis of U; and
set u; = R(u;). Then (uj,...,u;) is an orthonormal
basis of Us. Extend (uy,...,u;) to an orthonormal ba-
sis (w1, ..., u,) of V and extend (u},...,u}) to an or-
thonormal basis (u], ..., u},) of V. Let S be the operator
on V' such that S(u;) = w} for 1 < j < n. Then S
restricted to U; is equal to R and since S takes an or-
thonormal basis of V' to an orthonormal basis of V', S is
an isometry.
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16. Since the dimension of V is odd, S must have an
eigenvector v. Since || v ||=|| S(v) || the eigenvalue of v
is +1. Then S?(v) = v.

17. Let Sy be an orthonormal basis of U and S;;1 be
an orthonormal basis of U+. Then S = Sy U Spy1 is an
orthonormal basis of V. M¢(S,S) is a diagonal matrix
with £1 on the diagonal and therefore T is a isometry
and self-adjoint.

18. Set S = (w1, ug, w3, uy) =
1 1 1 1
1 1 -1 -1 ,
( NI R ) and S =
1 -1 -1 1
1 1 1 1
1 1 -1 0
(’Ul,'U27’Ug7'U4) = ( 1 ) -1 9 1 ) 0 )
1 -1 -1 0

A necessary and sufficient condition for an operator @)
to satisfy Q@1SQ = T is that Qi(v;) = aju; with
a; # 0. If Q is an isometry then we must have Q(v;) =
fu; for j = 1,2,3 it order to preserve norms and
Q(v4) = £iuy. However, since (v3,v4) = 1 we must

have (Q(vs), Q(v4)) = 1 whereas Q(vs3), Q(v4) are or-
thogonal.

6.5. Positive Operators, Polar
Decomposition and Singular
Value Decomposition

1. Assume S is a positive operator and S? = T.
Then ST = T'S. Since both are self-adjoint there ex-
ists an orthonormal basis S = (vy,...,v,) consisting
of eigenvectors for both S and T Let S(v;) = a;v; and
T'(v;) = bjv; and assume the notation has been chosen
so that b; # 0 for j < k,b; = 0 for j > k so that
Ker(T) = Span(vg41,. .., vy,). Now bjv; = T(v;) =
S2(v;) = aZv;. If follows that if j > k then a; = 0. If
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j < kthen aj,b; > 0 and a3 = b; so that a; is uniquely
determined. Thus, S is unique.

2. Since T is normal there exists an orthonormal basis
S = (v1,...,v,) consisting of eigenvectors of 7. As-
sume T'(v;) = a;v;. Letb; € Csuch that b? = a; and let
S be the operator such that S(v;) = b;jv;. Then S? =

3. Under the hypothesis there is an orthonormal basis S =
—b .

(v1,v2) such that M7 (S,S) = (a ) with b > 0.
a

b
Setr = Va2 +b2, A= % B = %. Then A2 + B2 =1
and B > 0 so that there exists a unique 6,0 < § < 7 such
that A = cos 0, B = sin 6. Let S be the operator such
—rsin ¢
> Then S? =

0
that Ms(S, S) = (’"COS 2

rsin 5 rcos 5

4. Under the hypothesis there are 7T—invariant sub-
spaces U1, ..., U, each of dimension two such that for
j# kU LU,andV =U; & --- @ U,. By Exer-
cise 3, there exists an operator .S; such that Ker(S;)
Ui®---@Uj—1 ®@Ujp1 @ --- @ U, and such that SJ2» is
the restriction of T to U;. Set S = S1 + -+ .5,,. Then
S2=T

5. Let S, T be positive operators. Then (S +T)* = S* +
= S+ T and so S+ T is self-adjoint. Now letv € V.

Then (S(v),v) > 0 and (T'(v),v). It now follows that
(S +T)(v),

v) = (S(v) + T(v),v) =

(S(v),v) + (T (v),v) >0+0=0.

6. Since T is a positive operator it is self-adjoint. Since

c is a real number T’ is self-adjoint. Now let v € V. We
then have

((eT)(v),v) =

the latter inequality since (T'(v),

(T (v),v) = c(T(v),v) >0

v) > 0andc > 0.

7. Since T is a positive operator there exists an orthonor-

mal basis S = (vy,...,v,) of eigenvectors such that if
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T(vj) = a;v; then a; > 0. Assume that T is invertible.
Then all a; > 0. Let v = c1v1 + - - - + ¢, v, # 0. Then

n n
v) = () ajcv;, Y cjvy) =
j=1 j=1

Since a; > 0 and ¢; € R,a;¢5 > 0. On the other hand,
some ¢; > 0 and therefore Z Ly ajc; > 0.

On the other hand, suppose 7' is not invertible and v €
Ker(T). Then (T'(v),v) = 0.

8. Since T is an invertible positive operator there ex-
ists an orthonormal basis S = (v1,...,v,) such that
T(v;) = ajv; with a; € RT. Let S be the operator such
that S(v;) = ;-v;. Then S = T~ since ST(v;) = v;
for all 5. Since % > 0 it follows that T~ = S is a posi-
tive operator.

9. 1) [, ] is positive definite: Assume v # 0. Then
[v,v] = (T'(v),v) > 0 by Exercise 7.

2) [, ] is additive in the first argument: [v; + vo, w] =
(T(v1 +v2), w) = (T(v1) +T(v2), w) = (T'(v1), w) +
(T(v2), w) = [v1, w] + [v, w].

3) [, ] is homogeneous in the first argument: [cv, w] =
(T(cv),w) = (T (v),w) = (T(v), w) = c[v,w].
4) [ . ] satisfies conjugate symmetry: [w,v] =
(T(w),v) = (w, T*(v)). However, since T is a positive
operator it is self-adjoint and 7" = T'. Thus

(w,T"(v)) = (w,T(v)) =

(T(v), w) = [v, w].

10 [S(v),w] = (T(S(v)),w) = (S(v),T(w))

since T' is self-adjoint. We therefore need to show that
[0, (T71S*T)(w)] = (S(v), T(w)). By the definition of
[, ] we have
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v, (T718°T)(w)] = (T(v), (T~'S*T)(w)) =

(0, T(T7'8"T)(w)) =
(0,(TT™)(S*T)(v)) =
(v, S*( (w)) =
(5(v), T (w))
as was required.
11. Define [, ] by [v, w] = (T'(v), w). By Exercise 9 this

is an inner product on V. Set S = RT. By Exercise 10 the
adjoint, S*, of S with respect to [, | is S* = T1S*T
Now S* = (RT)* = T*R* = TR since both R and T'
are self-adjoint. Thus, S* = (RT)* = T-YTR)T =
RT. Consequently, RT is self-adjoint with respect to [, ]
and therefore is diagonalizable with real eigenvalues. The
operator T'R is similar to RT since TR = T(RT)T~!
and since RT is diagonalizable with real eigenvalues so
is TR.

12. Assume T is a positive operator and let S =

(v1,...,v,) be an orthonormal basis for V' such that
T(vj) = ajv; where a; € RT U {0}. Now assume that
T is an isometry. Then we must have |a;| = 1 for all j,

whence, a; = 1forall jand T = Iy.

13. Since S, T are self-adjoint and ST = T'S it follows
that ST is self-adjoint. Then there exists an orthonormal
basis S = (vy,...,v,) consisting of eigenvectors for S
and for T. Set S(v;) = ajv;,T(v;) = b;jv;. Since S,T
are positive, a;,b; > 0. Then a;b; > 0. Now S is an
orthonormal basis for V' consisting of eigenvectors for ST’
and ST(v;) = a;b; > 0. It follows that ST is a positive
operator.

14. Let the operators S and 7" on R? be defined as multi-
plication by the following matrices, respectively:

2 0 3 -1

0 3)’\-1 3)°
15. Assume 7T is invertible. Then T*T 1is invertible and
hence so is vT*T. Then S = T+/T*T  is unique.
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On the other hand if 7" is not invertible then 7T is not
invertible and neither is /7™*7'. In this case there are in-
finitely many isometries .S which extend R and so .S is not
unique.

16. Since T is not invertible, S is not unique. One solution
is

1 —V3-1 —/3+1
3 3 3
V3-1 1 —v/3-1
3 3 3
V3+1 V341 1

3 3 3

17. Let V =C*, W =C™and T : V — W be the op-
erator such that T'(v) = Av. Let Sy denote the standard
basis of V and Sy the standard basis of W.

By Theorem (6.12) there are orthonormal bases By =
(v1,...,v,) and By = (uq, ..., uy,) such that T'(v;) =
sjwj for1 < j < rand T(v;) = Ow if j > r. Let
P = My, (By,Sy) and Q = My, (Sw, Bw). Assume
1 < j <r.Then

QAPej = QAv; = Q(T(v))) = Q(s;w;) =
5;Qw; = sje}}v.
If 7 > r then
QAPe! = QAv; = Q(T(v;)) = Q0w = Oy
Thus, QAP has the required form.
18.  We have shown that Ker(T) = Ker(T*T)

and similarly, Ker(T*) = Ker(TT*). Since T*T is
a self-adjoint operator it is diagonalizable and V =
Ker(T*T) ® Range(T*T) = Ker(T) ® Range(T*T).
Similarly, V' = Ker(T*) & Range(TT*). Note
that since nullity(T) = nullity(T*) it follows that
dim(Range(T*T)) = dim(Range(TT*)). Let S de-
note the restriction of the operator T' to Range(T*T).
Suppose v € Range(T*T). Then there is a vector
u € V such that v = (T*T)(u). Then S(v) =
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T(v) =T(T*T))(u) = (TT*)(T(u)) € Range(TT™).
Thus, Range(S) C Range(TT*). However, S is in-
jective since Ker(T) N Range(T*T) = {0}. Since
dim(Range(T*T)) = dim(Range(TT*)), in fact, S is
an isomorphism.

Now assume that v € Range(T*T) is an eigenvector
with eigenvalue a. We claim that S(v) is an eigenvector
of T'T'"* with eigenvalue a. Thus, we must apply 71" to
S(v) and obtain aS(v).

(TT")(S(v) = (TT*)(T(v)) = [T(T"T)|(v) =

T(T*T)(v)] = T(av) = aT'(v) = aS(v)

as required.

19. Assume rank(T) = k. Since T is semi-positive
there exists an orthonormal basis B = (vy,...,v,) of
eigenvectors for 7' with T'(v;) = ajv; with a; > 0
for 1 < j < kand T(v;) = 0 for j > k. Now
T*T = T since T is self-adjoint. Now T?(v;) = ajv;
for1 < j < kand T%(v;) = O for j > k. Then the

singular values of T are 4 /a?, 1 < j < k. However, since

aj >0,,/a} = a;.

20. Assume SP = PS. Multiplying on the left and on the
right by S~1 we get PS~! = S~1P.

Now, (SP)* = P*S* = PS~' = S~'P. Then
(SP)*(SP) = (PS™1)(SP) = P2. On the other hand,
(SP)(SP)* = (SP)(PS™!) = (PS)(S~'P) = P? and
S P is normal.

Conversely, assume SP is normal.  Then P?
(SP)*(SP) (SP)(SP)* SP2S—'. Thus, S
commutes with P? and therefore leaves invariant each
eigenspace of P?. However, since P is positive the
eigenspaces of P and the eigenspaces of P? are the
same. Therefore S leaves the eigenspaces of P invari-
ant. Let v be an eigenvector of P with eigenvalue a. Then
(SP)(v) = S(P(v)) = S(av) = aS(v). On the other
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hand, (PS)(v) = P(S(v)) =
eigenvector with eigenvalue a.

aS(v) since S(v) is an

02/06/15 3:12 pm



Chapter 7

Trace and Determinant of a Linear Operator

7.1. Trace of a Linear
Operator

1. Let A have entries a;;,1 < 7,5 < n and B have entries
bij,1 < 4,5 < n.Then A + B has entries a;; + b;;, 1 <
1,7 < n. Then traces are given by

Trace(A) = a11 + -+ + ann

Trace(B) =bi1 + -+ + bun

TT(A + B) = (all + bll) + -+ (ann + bnn) ==
[all ++ann]+(bll++bnn] -
Trace(A) + Trace(B).

2. Let A have entries a;5,1 < 4,j < n. Then the entries
of cA are ca;j,1 < 7,5 < n. The traces are given by

Trace(A) = a1+ + apn
Trace(cA) = (cain) + -+ (cann) =
clair + -+ + ann] = cTrace(A).

3. Assume P is an invertible n x n matrix and C' is an
n x n matrix and set D = P~'C'P. We need to show that
Trace(D) = Trace(C).Set A= CPand B = P~!. By
Theorem (7.1), Trace(AB) = Trace(BA). However,
AB = (CP)P~™! = C(PP~') = CI,, = C whereas
BA=P'CP=D.
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4. The matrices M (B, B) and Mr(B’,B’) are similar
so by Corollary (7.1) they have the same trace.

5. Let B be a basis for V. Then Tr(ST) =
Trace(Mgr(B,B)). However, Mgrp(B,B) =
Ms(B, B)Mp (B, B) so that

Tr(ST) = Trace(Mgs(B, B)yMr(B, B))

In exactly the same way

Tr(TS) = Trace(Mr (B, B)Mgs(B,B))

By Theorem (7.1), Trace(Mg(B,B)YMr(B,B) =
Trace(Mr(B, B)Mg(B,B)).

6. Let B be a basis for V. Then Tr(cT) =
Trace(M.r(B,B)) = Trace(cMr (B, B)).
However, by Exercise 2, Trace(cMr(B,B)) =
cT'race(Mr(B,B)) = cI'r(T).

7. Since (z1 + w2 + 23)% — (3 + 23 + 23) = 2(2122 +
r1T3 —‘r.%‘g.fg) we conclude that x1 x5 + 123 + 2223 = 0.

Next note that
31’1IIJ25€3 = (.Tl -+ X2 -+ $3)(£L’1$2 —+ T1T3 —+ 1’2(53)7
(w1 + @2 +x3) (2} + 23 + 25) + (2 + 23 +23) =0

We may therefore assume that at least one of x1, x2, x3 is
zero and by symmetry that x5 = 0. Since z129 + 2122 +
xox3 = 0 we further conclude that 215 = 0. But then
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(1 +20)? =22 + 23 £ 22129 = 0

from which we have

1'1+£L'2:£C1—1'2:0
and x1 = x9 = 0.

8. Since A is similar to an upper triangular matrix we can
assume that A is upper triangular. Let o, aia, a3 be the

diagonal entries of A. Then the diagonal entries of A2 are

a?, a3, a2 and the diagonal entries of A2 are of, a3, a.

It follows that

0=Tr(A) =a1 +as+ as
0=Tr(A») =a? +a2+a?

0="Tr(A% =a? + a3+ al.

From Exercise 7, a3 = g = ag = 0 and A is nilpotent.

9. This depends on proving the only solution in complex
numbers to the systems of equation

I + + Ty = 0

3+ + 22 =0

2 4+ ...+ oz = 0
iSxy =9 = =2x,.

The crux is to show that x1x5...x,, = 0 from which it
follows that one of the variables is zero which, by sym-
metry can be taken to be z,, and then apply induction.

For the former, consult an abstract algebra book in which
it is proven that the homogeneous polynomials 1 + - - - +
Tp, x5+ + a2, ..., 27+ + 2 generate the ring of
homogeneous polynomials in x1, 22, ..., Z,. In particu-
lar, x122 ... 2,.

10. Let B be a basis for V. Set A = Mr(B,B).
We need to prove that A is the n X m zero matrix.
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Now Trace(Mg(B,B)A) = 0 for every operator S on
V. However, Mg (B, B) ranges over all the matrices in
M, (F). Let E;; be the matrix which has one non-zero
entry, a one in the (i, j)—position. Let a;; be the entry
of A in the (i, j)—position. If k # i then the k*" row
of E;;A is zero, whereas the i*" row consists of the j"
row of A. and therefore Trace(E;;A) = aj;. Thus, for
all 4, j,a;; = 0 and A is the zero matrix as required.

11.  Since all the eigenvalues of A are real there
exists a non-singular matrix @ such that Q 'AQ is
upper triangular. ~ Assume the diagonal entries of
Q 'AQ are ai,...,a,. Then the diagonal entries
of (Q71AQ)? Q1A%Q are a?,...,a%. Then

Trace(A?) = Trace(Q 1A%2Q) = a3 + -+ + a2 > 0.

12. Since 7% = T the minimum polynomial of 7" divides
2% —  and all the eigenvalues of Aare O or 1. Let Bbe a
basis for V and set A = My (B, B). There exists a non-
singular matrix ) such that Q~'AQ is upper triangular
with diagonal entries 0 or 1. Then T'r(T') = T'race(A) =
Trace(Q~tAQ) is a sum of the diagonal entries, whence

a non-negative integer.

13. Let B be an orthonormal basis of V and
set A = Myp(B,B). Then Mrp«(B,B) = A",
Since A and A!" have the same diagonal entries,
Trace(A) = Trace(A™). Thus, Tr(T) = Trace(A) =
Trace(A") = Tr(T*).

14. Let B be an orthonormal basis of V and set A =
My (B, B). Then M« (B,B) = A" Tt now follows that

Tr(T*) = Trace(Atr) = Trace(A) = Trace(A) =
Tr(T).

15. Tr : L(V,V) — Fis anon-zero linear transformation
and consequently it is onto the one-dimensional space F.
sl(V) = Ker(Tr) and so is a subspace and by the rank-
nullity theorem, dim(sl(V)) = dim(L(V,V)) — 1 =

n? —1.

16. If S = T*T then S is a semi-positive operator
which implies that it has real eigenvalues which are all
non-negative and, since it is self-adjoint, there is a or-
thonormal basis B such that My (B, B) is diagonal. Let
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A = Myp(B,B) = diag{ai,...,a,}. Since a; are 1
eigenvalues all a; > 0. Then Tr(T) = Trace(A) = . 0
ay + -+ + a, > 0. On the other hand, the trace is zero if [S(u;)]s € Span(ey) for 2 < j < n where e; =

and only if a; = --- = a,, = 0. However, this implies A 0

is the zero matrix, whence 7T is the zero operator.

17. We do a proof by induction on n = dim(V). If
n = 1 there is nothing to do. So assume the result is true
for operators on spaces of dimension n — 1 and assume
dim(V) = n. If T = Oy _,y then any basis works so we
may assume 7' # Oy _,y. We first claim that there is a
vector v such that T'(v) ¢ Span(v). Otherwise, for each
v there is A\, € F such that T'(v) = A,v. We claim that
Ay 18 independent of the vector v. Of course, if w = cv
then T'(w) = ¢T(v) = cApyv = Ap(cv) = Apw. Sup-
pose on the other hand that (v, w) is linearly independent.
Then Ay ¥ + Ayt = Aprw(v+w) =T(v+w) =
T(v) + T(w) = A\pv + Apw. Then Ay = Ayjw = Ay
Thus, T' = Ay for some A € F. Then Tr(T) = nA = 0.
Since the characteristic of [ is zero, A = 0, contrary to
our assumption that 7" # Oy _, .

Now choose v such that T'(v) ¢ Span(v) and set

v; = v and v = T(v) and extend to a basis By =
(v1,v2,...,v,). Let T(v;) = > I, a;;v; and set a; =
0
1

[T(v;)]5. Note that a; = e = | 0 |. Since Tr(T) = 0
0

we must have Y7 , a;; = 0. Now define an operator S
on V such that S(v1) = vy and S(v;) = Y I, ai;v;.
Note that W = Span(vs, ..., v,) is S-invariant and that
Tr(Syw) = > sai = 0. Set S" = Sjyy. By the induc-
tive hypothesis, there is a basis By = (w1,...,W,—1)
for W such that the diagonal entries of Mg/ (Bw, Bw)
are all zero. Set u; = vy, u; = wj_; for2 < j < nand
B = (u1,...,u,). Since T'(v;) — S(v;) € Span(v,) for
2 < j < nit follows that T'(u;) — S(u;) € Span(vy)
for 2 < ¢ < n. Consequently, for 2 < j < n, [T(u;)|s —
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However, the (3, j)-entry of [S(u;)]z is zero, whence the
(4,4)-entry of [T'(u;)]g is zero. Thus, all the diagonal
entries of M (B, B) are zero as required.

18. Let Z be the set of n X n matrices all of whose diag-
onal entries are zero. Then Z is a subspace of M, (F) of
dimension n? — n. For a matrix B define a map ad(B) :
Mo (F) = M, (F) by ad(B)(C) = BC — CB. This is
a linear map and Ker(ad(B)) = C(B) the subalgebra of
M, (F) which commutes with B. Note that if the mini-
mum polynomial of B has degree n then dim(C'(B)) =n
and Range(ad(B)) has dimension n? — n.

Now let a1, ..., a, be distinct elements of F and let B
be the diagonal matrix with entries a1, ..., a,. Then the
minimum polynomial of B is (x — aq1)...(z — a,) has
degree n and therefore dim(Range(ad(B)) = n? — n.
On the other hand, for any matrix C' the diagonal entries
of BC — CB are all zero. Thus, Range(ad(B)) = Z.
Thus, for A € Z then there is a matrix C' such that A =
BC - CB.

19. By Exercise 17 there exists a basis B such that A =
M (B, B) has diagonal entries all zero. By Exercise 18
there are matrices B, C' such that A = BC — CB. Let
R,S € L(V,V) such that Mg(B,B) = B, Ms(B,B) =
S.ThenT = RS — SR.

7.2. Determinants

1. Let B be the matrix obtained from A by exchanging
the first and ‘" rows. Let the entries of A be ax; and the
entries of B be by;. Let Ay be the matrix obtained from A
by deleting the k*" row and I*" column, with B}, defined
simila.rly. Set My, = det(Akl),M];l = det(Bkl),Ckl =
(—1)k+lel and C;Cl = (—1)k+lM]/€l.
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Since B is obtained from A by exchanging the first and
it" rows, det(B) = —det(A). By Exercise 1

det(B) = buC{l + -4 blnC;/Ln
Note that by ; = a;;. Also, the matrix B, is obtained from
the matrix A;; by moving the first row to the (i — 1)
row. Note that this can be obtained by exchanging the
first and second row of A;; then exchanging the sec-
ond and third rows of that matrix, and continuing until
we exchange the (i — 2)"¢ and (i — 1)** rows. Thus,
there are ¢ — 2 exchanges which implies that det(B1;) =
(—1)i72d€t(Aij) = (—1)ld€t(A”) Thus,
M{j = (—1)1Mij-

It then follows that

C{j = (*1)1+jM{j -

(D) (=1)' My = (1) My = —Cyy.

Putting this together we get

—det(A) = det(B) = a;1 (—Cj1) + - + ain(—Cin)
Multiplying by -1 we get
det(A) = a;1Cin + -+ + ainCin
2. Let B = A'. Denote the (i,j)—entry of B by b;;

and the (4, j)—cofactor by C;;. By Exercise 3, det(B) =
det(A). By exercise 2 for any j

det(B) = bjlcjl'l + ijC;-Q 4+ 4 ban]'n

Since B is the transpose of A,b;; = a;; and C}i = Cy.
Thus,
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det(A) = det(B) =a1;C1j + a2;Coj + - 4+ an;Ch;

3. Let B be an orthonormal basis of V. Then det(T') =
det(Mr(B,B)) and det(A*) = det(Mr~ (B, B)). How-
ever, if A = Myp(B, B) then M« (B,B) = A" Then

—1r

det(T*) = det(A") = det(A) = det(T).

C1
4. If v = then J, v is the vector all of whose en-
Cn
n
n
tries are equal to ¢y +- - -+c,,. Thus, J,j, = = Njn
n

and j,, is an eigenvector with eigenvalue n. This proves i.

If follows from the previous paragraph that J,v; =
0. The sequence (v1,...,v,—1) is linearly independent
and spans a subspace of dimension n — 1 contained
in null(J,). Since null(J,) is a proper subspace of
R™, Span(vy,...,v,—1) = null(Jy,). This proves ii).

iii) Since j, ¢ Span(vi,...,v,—1) the sequence B =
(v1,...,Vp_1,Jn) is linearly independent. Since there
are n vectors and dim(R"™) = n, B is a basis for R™.

(alp)jn + (bJy)jn = ajn + (bn)jn, = [a + bn]jn.

Thus, j, is an eigenvector of A with eigenvalue a + bn.

On the other hand, Av; = (al,, + bJ,)v, =

(aln)vi + (bJy)v; = av;.

This shows that each v; is an eigenvector with eigenvalue
a.Thus, B = (vy,...,v,_1,n) is a basis of eigenvectors
for A with eigenvalues a with multiplicity n—1 and a+bn
with multiplicity 1. This implies that A is similar to the
diagonal matrix with n — 1 entries equal to a and one
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t row to get the

entry equal to a + bn. The determinant of this diagonal We can factor ay, — « from (k — 1)°
matrix is the product of the diagonal entries and is equal determinant is
to a™!(a+bn). Since A is similar to this diagonal matrix, v—o (i, — ap) times the determinant of

det(A) = a™(a + bn).

6. We proceed by induction starting with n = 2 1 as4+ay ... QS*Q +0/2“L*3a1 +-~-+a{‘*2
as the base case. Direct computation shows that 1 as4+ay ... a§72+a§*3a1+-~-+a]‘*2

a1 Q9
holds for n — 1. We will use properties of determinants
of matrices to compute the determinant of

1 1
det(( >) = a3 — «j. Thus, assume the result

_ _s ,—2
1 ap+ar ... a’?+a3a;+-+af

We need to compute the determinant of the matrix

1 1 ... 1 1 agtar ... ay ?+ay o+ +af?
o ay ... oy 1 as+oar ... ozg_2 + 0/3”_30[1 + o+ o/f_Z
af o ay :
: 1 ap+a; ... a2_2+a2_3a1+~-~+a?72
n—1 n—1 n—1
af o an . . d
Take its transpose. Then subtract «v; times the (n — 2)™
. . . t : d
We begin working with the transpose row from the (n — 1)* row, the oy times the (n — 3)"
row from the (n — 2)*! row and continue, subtracting
1 o ... a’f*l times the second row from the third row and «; times the
1 ay ... a;’*l first row from the second row. The matrix obtained is
) o 1 1 1
cn n a g an
a3 a3 a?
Subtract the first row from all the other rows to get the 2 3 n
following matrix which has the same determinant: :
-2 n—2 n—2
(&%) (6% (0%
1 a .. ayt ° "
n—1 n—1
0 ap—ar ... ay —o By the induction hypothesis, the determinant of this
: matrix is [[,o; p<,(ax — «;). Multiplying this by
0 an—a; ... arl—qat? [1,<j<n(j — @1) we obtain the desired formula.

7. Construct the matrix A’ from the matrix A by replacing
the i*" row with the j*" row. Note that the (i, k)—cofactor
of A’ is the same as the (i, k)—cofactor of A which we
denote by C.

By Exercise 2 we can use a cofactor in the first column
to compute the determinant. Since the only non-zero en-
try is in the (1,1)-position the determinant is equal to the
determinant of the following (n — 1) x (n — 1)—matrix
Since two rows of A’ are identical, det(A’) = 0. On the

o o 02— a2 a1 gnt other hand, computing the determinant of A’ using the
2 — Q1 2 — 1 oo 2 - . . .
5 5 no1 no1 cofactor expansion in the it row of A’ we get
a3 —ap ag—o] ... a3  —aj
_ -1 _ no_
ap—a1 a2 —at ... a7 l—af 0=det(A") = a;1Ci1 + a;2Ci2 + -+ ajnCip,
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8. The (i,7)—entry of AAdj(A) is equal to
ainCi1 + a;aCiz + -+ + ainCin

By Exercise 2 this is det(A). On the other hand if i # j
then the (7, j)—entry is

aﬂle + aiQCjQ + -+ aiann
which is zero by Exercise 7.

Putting these together we have AAdj(A) = det(A)I,.

9. Since the entries of A and A~! are integers we have
det(A), det(A~1) are integers. Since det(A)det(A™1)
1 either det(A) det(A=1) = 1 of det(A)
det(A™1) = —1.

10. Since A is an integer matrix, Adj(A) is an integer
matrix. By Exercise 9, AAdj(A) = det(A)I, = €I,
with e € {—1,1}. Set B = €Adj(A), an integer matrix.
Then AB = I,, from which it follows that BA = I,, and
B=A""

11. If T is a Hermitian operator then there exists a basis
B of V such that M (B, B) is diagonal with real entries.
Then det(T) = det(Mr(B, B)) is a real number.

12. T*T is a positive operator, whence diagonalizable
with non-negative real eigenvalues. Therefore det(T*T')
is non-negative. If T is not invertible then det(T*T") = 0.
On the other hand, if 7" is invertible then 777 is invertible
and hence det(T*T') # 0 whence det(T*T) > 0.

13. Let B be an orthonormal basis for V' and set A =
My (B,B). Then A is an orthogonal matrix, that is,
A~ = A* . Then

1 = det(I,,) = det(AA™) = det(AA™) =
det(A)det(A™) = det(A)%.
Thus, det(T) = det(A) € {—1,1}.

14. Let B be an orthonormal basis of V and set A =
Mr(B,B). Then A is a unitary matrix, that is, A~ =
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A" Then det(A~') = det(A). Then 1 = det(I,) =
det(AA™Y) = det(A)det(A™Y) = det(A)det(A) =||
det(A) ||? . Thus, || det(T) ||=|| det(A) ||= 1.

15. Assume dim(V) = n = 2k + 1. Recall this means
that T —T. Note that for a scalar ¢,det(cT) =
c"det(T). Therefore det(T) = det(T*) = det(-T) =
(—1)2k*1det(T) = —det(T). Thus, det(T) = 0.

16. The assumption implies that the columns of the matrix
are linearly dependent:

vl — V2 + U3 — - — Vg + Vo1 = 0.
Thus, the matrix is not invertible and det(A) = 0.

17. Let A be such a matrix. Since we are not con-
cerned about signs, by multiplying the first row by -1, if
necessary, we can assume that the (1,1)-entry is 1. Use
Gaussian elimination to make all the other entries in the
first column zero and denote this matrix by B. Then
det(B) = +det(A). Let b;; denote the entries of B. Then
fori,5 > 2,b;; € {—2,0,2}. Write b;; = 2¢;; where
cij € {—1,0,1} so that

1 1 1 - 1
0 2co9  2co3 2¢ay,
B= _
0 2Cn2 26713 QCnTL
Then det(B) = 2"~ 1det(C) where
1 1 1 1
0 C22 C23 Con
C= . ) .
0 Cpn2  Cp3 Cnn

Since C' is an integer matrix det(C') is an integer.

18. Since at most one row has no zeros we can assume
that all rows below the first have at least one zero and
therefore there at least n — 1 zeros. On the other hand we
claim that the matrix
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1 1 1 1 f(ul,...,ui,...,uj_l,uj,...,um):
1 01 1
A: X ff(ul,...,ui,...,uj,uj_l...,um)
1 1 1 0 However, by the inductive hypothesis
is invertible. f(ul, ey Uy, UG, UG e, um) = 0.

After subtracting the first row from each subsequent row
we get the matrix

1 1 1 1

0 -1 0 0
B=1. :

0 0 0 -1

Then det(A) = det(B) = +1.

19. Player 2 should apply the following strategy: if Player
1 places an entry in position (i, j) with ¢ > 2 then Player 2
places an arbitrary entry in a position (k,[) with k > 2. If
Player 1 puts a number b in position (¢, j) with ¢ € {1,2}
then Player 2 puts the same number b in position (k, j)
where {i,k} = {1,2}. When the matrix is filled the first
and second rows will be identical and the matrix will have
determinant zero.

20. Taking determinants we get det(AB) =
det(A)det(B) = det(BA). On the other hand
det(—BA) = (—1)*'*1det(BA) = —det(BA). There-
fore det(AB) = —det(AB) and so is zero. Then either
det(A) = 0 or det(B) = 0 so either A is not invertible or
B is not invertible.

7.3. Uniqueness of the
Determinant

1. The proof is by induction on 5 — . If j —¢ = 1 this fol-
lows from the definition of an alternating form. Assume
the result for ¢ and assume that u; = u; with j—7 = t+1.
By Lemma (7.10)
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2. We previously proved that every invertible matrix is a
product of elementary matrices. This implies that every
invertible operator is a product of elementary operators.

3. We demonstrate this for m = 2 the proof of general m
is similar. Let f,g € £(V2,W). We need to show that
f+geL(VEW).Letvy,ve,u € V. Then

(f +9)(v1 +v2,u) = f(vr +v2,u) +g(vi +v2,u) =

[f(v1,u) + f(ve, w)] + [g(v1, u) + g(v2, u)]
[f(v1,u) + g(vi,u)] + [f(v2,u) + g(v2, u)]
(f +g>(v1vu) + (f +g>(v2vu)

That (f—’_g)(u»vl"_vZ) = (f+g)(u,vl)+(f+g)(u,172)
is proved in exactly the same way.

Now let u,v € V and c is a scalar. We need to prove
(f +9)(cw, v) = (f + 9)(uw,v) = c(f + 9)(u, v).

(f + 9)(cu,v) = f(cu,v) + g(cu,v) =
cf (u, U) + cg(u,v) = c[f(u, 'U) + g(u, 'U)] =
C[(f + g) (u’ ’U)] = C(f + g) ('u” ’U)

Likewise

(f +9)(u,cv) = f(u,cv) + g(cu, cv) =

cf(u,v) + cg(u,v) = C[f(ua v) + g(u, ’U)} =
[(f + 9)(w,v)] = c(f + g)(u,v)

Now assume f € £(V?2, W) and c is a scalar. We need to
prove that cf € L(V2,W). Let vy, v, u € V. Then
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6. We prove this for (4, j) = (1, 2). We first show that fi

(cf)(v1 + v, u) = ¢[f(v1 + v2,u)] = is alternating:
C[f(’U1, u) + f('UQvu)] = cf('vl,u) + Cf('Ug, u) = a1 ai
(Cf)(’U1, u) + (Cf)(v27 u) f12( @2 , @2 ) = ai1a2 — aza1 = 0.
as as
In exactly the same way we prove that (cf)(u, v; +v3) = a4 a4
(ef)(w, v1) + (cf)(u, v2). We prove additive in the first varialbe:
Finally, we need to show that if d is a scalar and u,v € V'
then (cf)(du, v) = (cf)(u, dv) = dI(cf)(u, v)]. “\ (Y (e
N EIE
12 as b3 ’ cs -
(ef)(de v) = el (duu,v)] = cldf (u,v)] = w) ) \e

(a1 + bl)CQ — ((12 + 52)01 =

(cd) f(u,v) = (dc) f(u,v) = dlcf(u,v)] =
(arca + bica) — (ager + bacy) =

Allef)(w. o)} (a1ca —ager) + (bicg — bacy) =
Similarly,
aq C1 b1 C1
(c)(u.dv) = clf (u, dv)] = c[df (u, )] = Aol 2 D 22D
as C3 b3 C3
(cd) f (,0) = (do) f (u, v) = dlef (u.v)] = aa/ A\ b/ A
dl(cf)(u,v)]. A similar argument shows that f;o is additive in the sec-

ond argument.
4. Again we prove this for m = 2. The general case

is similar. We need to prove the following: i) If f,g € .
Alt(V2, W) and w € V then (f + g)(u,u) = Oy ; and variable
ii) If f € Alt(V2,W), cis a scalar and w € V then

We now prove that f15 has the scalar property in the first

(cf)(u,u) = Oy . ay b1 caq b1
. . b b
1) (f + g)(uau) = f(u7u) + g(u7u) Since fvg € le(C 22 ) b2 ) = f12( 232 ) b2 ) =
Alt(V? W) we have 3 3 3 3
ay b4 cay by

(car)by — (caz)by = c(arby) — c(azby) =
i) (cf) (w, w) = el f(u, u)] = O = Oy

5. Assume m > n = dim(V) and f € Alt(V™,W). Let ay by
(uy,...,um,) be a sequence from V. Since m is greater larbs — ashy] = cfra as ba )
than the dimension of V' the sequence is linearly depen- 172 201 =512 as || b3
dent. By Lemma (7.11) f(uq,...,u;) = Ow. a4 by
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7.3. Uniqueness of the Determinant 79

The scalar property in the second variable is proved simi-
larly.

7. Let e; denote the it standard basis vector of F4 and
set ;; = (e;,e;) for 1 < 4,5 < 4. Then any alter-
nating form f € Alt(V2 F) is uniquely determined by
its values on e;;. Next note that f;;(ey;) = 0;10;;. This

implies that (f12,..., f34) is linearly independent: Sup-
POse < j<y @ijfij = 0. Evaluating at ey we find that
ar] = 0.

We next show that (fia,..., f34) spans L£(VZ F). Let
f € Alt(V2F) and let a;; be equal to f(e;;). Set
g = aiafi2 + -+ azsfz4. Then g € Alt(V2 F). More-
over, g(e;j) = a;; = f(e;;) which implies that f = g.

8. This follows since the determinant is an alternating
map of the columns of the matrix.

9. Again let e; be the i*" standard basis vector. Let
e;;i denote the ordered triple (e;,e;,e,) where 1 <
i < j < k < 4. Then any alternating form f €
Alt(V3,F) is uniquely determined by its values on
(€123, €124, €134, €234).

Next note that g;(e;;x) = 1if {i,7,k, 1} = {1,2,3,4}
and is zero otherwise. As in Exercise 8 this implies that
(91, 92,93, 94) is linearly independent. We show that it
spans Alt(V3 ).

Let f € Alt(V3,F) and set a;j5 = f(eijr) and g =
a23491 + 13492 + 12493 + a12394. Then g(e;jx) =

a;;, and therefore ¢ = f. Thus, (g1, 92,93, 94) spans
Alt(V3,F) and so is a basis.
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Chapter 8

Bilinear Maps and Forms

8.1. Basic Properties of
Bilinear Maps

1. Let vi,v2 € V,w € W. Since each f; is bilinear we
have f;(v1 + ve, w) = fi(v1,w) + fi(ve, w). We then
have

F(vi + v, w) = Zfi(vl + v, w) =
i=1

S

> lfilvr,w) + fi(vs, w)] =

i=1

D filvi,w) + Y filvs,w) =
i=1 i=1
F(vi,w) + F(v2,w)

For v € Viw;,wy € W that F(v,w; + wy) =
F(v,w;) + F(v,wy) is proved in exactly the same way.

Now let v € V,w € W and ¢ € F. Since each f; is
bilinear, f;(cv,w) = cfi(v,w) = fi(v,cw). We then
have

S

F(cv,w) = Zfi(cv,w) = Zcf,»(v,'w) =

i=1

chi('u,w) = cF(v,w).

i=1
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S

F(v,cw) = Zfi(v,cw) = Zcfi(v,w) =

i=1

CZ filv,w) = cF(v,w).

=1

2. Let vi,vo € F™ w € F". Then

fv1 +v9,w) = (v1 +v2)" Aw = (vl + V) Aw =
v Aw + vE Aw = f(v,w) + f(ve, w)
Ifv e F™ wy,wy € F” then

flv,w +w) = v A(wy +wy) =
v Awy + v Aw; = f(v,wr) + f(v, wa).

Assume v € F™, w € F™ and ¢ € F then

flev, w) = (cv)" Aw = cv' Aw =
c(v"" Aw) = cf (v, w)

f(v,cw) = v A(cw) = c(v" Aw) = cf (v, w).

3. By additivity in the first variable we have

f(v,w) = f(z Ci Uy, Zdjwj) =
i=1 j=1
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m n

> flevi, Y djw;)
j=1

i=1

By additivity in the second variable we have

m n

=Y O flewi,djw)

i=1 j=1

By homogeneity we have f(cv;,d;w;) =

(¢id;) f(vs, w;) = (cidj;)a;; and consequently

tr

¢ dy

m n Co dQ

f('v,w) = Z Zcidjaij = : A .
i=1 j=1 . .

Cm dn,

4. Let (vy,...,v,) be a basis for V, (wy,...,w,) a
basis for W and (x1,...,xs) a basis for X. Let fg;; :
V x W — X be defined by

m n
fklt(z a;v;, Z bjw;) = arbiz,.
i—1 i=1

Then {fri|]l <k <m,1 <1 <n,1<t<s}isabasis
for B(V,W; X).

5. For w € W denote by F' the map from V' to [F given by
F(w)(v) = f(v,w). This is a linear transformation from
Wto V! = L(V,F). Since dim(V') = dim(V') = m by
the rank-nullity theorem dim(Ker(F)) > n — m. The
result follows since Radg(f) = Ker(F).

1
6. Let A = (8 O)' Set V. = F? and define f :

V xV = Fby f(v,w) = v'"Aw. Then Radr(f) =
{(2) |la € F} and Radg(f) = {(S) b€ F}.

. Set V = F? and define f :

) = v Aw. Then Radg(f) =
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0
Rady(f) = Span(| 0 | ). However,
1
1 1
f( o), -1 ):0
0 0
1 1
f(l-1],10])=1
0 0
11 ,
8. Let A = 01 . Set V = F*® and define f : V X

V — Fby f(v,w) = v'" Aw. Then

() ()
(46

9. Define fT:V xV = Fby fT(v,w) = 1[f(v,w) +
f(w,v)]. Then f* is symmetric. Similarly, define f~ :
VxV = Fby f~(v,w) = :[f(v,w) — f(w,v)]. Then
f~ is alternating and f* + f~ = f.

10. Since A = I,, Al, every m X m matrix is equivalent
to itself and the relation of equivalence is reflexive.

Suppose B is equivalent to A. Then there exists an invert-
ible m x m matrix R and an invertible n X n matrix @
such that B = RAQ. Then A = R™'BQ ! and so A is
equivalent to B.

Finally, assume B is equivalent to A and C' is equivalent
to B. Then there are invertible m x m matrices R;, Ro
and invertible n X n matrices (1, Q2 such that

B = R1AQ1,C = Ry BQ>.
Then C' = (RaR1)A(Q1Q2). Since the product of invert-

ible two invertible matrices is invertible, Ry R and Q1Q)2
are invertible and therefore C' is equivalent to A.
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11. Assume the m x m matrix A has rank 7. We
prove that A is equivalent to the matrix M =

mXxXn
I
< " > The result will follow
O(m—r)xr
from this.

Orx(nfr)
O(m—r) X (n—r)

Use Gaussian elimination to obtain the reduced echelon
form of A. Since A has rank r there is an 7 X (n — r)
matrix C' such that the reduced echelon form of A is

B:< I ¢ )
O(TYL—T‘)XT‘ O(m—r)x(n—r)

This implies that there are elementary matri-
ces Fq,...,E; such that B = F,...E{A. Set
R = E,...FE;. Then R is an invertible matrix. Next
consider B¥" =

(Ir Orx(m—r) )
ctr O(n—r)x(m—r)

echelon form of this

The reduced

( Ir Orx (n—r) > . Thus, as above, there is
0(m—7')><'r‘ O(m—'r')x(n—r)

an invertible n X n matrix P such that PB"" = M .

Then RAP'" = BP'" = (PB")"" = MJ,,. = M}

as claimed.

matrix is

nxm mxXn

12. Since I'" AI,, = I, Al, = A every n X n matrix is
congruent to itself and the relation of congruence is re-
flexive.

Assume B is congruent to A so that there is an in-
vertible n x n matrix P such that B = P AP. Set
Q = P7!' Then Q" = (P71 = (P')~!. Then
A = (P"")7!BP~! = Q" BQ and so A is congruent
to B. This implies the relation is symmetric.

Finally, assume that B is congruent to A and C is con-
gruent to B. Then there are invertible matrices P, () such
that B = P AP,C = Q" B(Q. Substituting in the latter
expression we get

C=Q"(PTAP)Q = [Q"P"]A[PQ] = [PQ]" A[PQ)].
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Since P, Q are invertible n x n matrices, the product PQ)
is invertible. Thus, C'is congruent to A and the relation is
transitive.

13. Let By = (v1,...,v,,) be a basis for V and By =
(wi,...,wy) be a basis for W. Let a;; = f(v;, w;)
and let A be the m X n matrix with entries a;;. Set
r = rank(A).

Let v € V and w € W. Then v € Radp(f)
if and only if [v]g, is the null space of A" and
w € Radg(f) if and only if [w]p,, is in the null
space of A. Since the rank(A™) = rank(A) we
have dim(Radr(f)) = nullity(A") = m — r
and dim(Radr(f)) = nullity(A) = n — r. Then
dim (V/Radr(f)) =m—(m—-r)=r=n—(n—r) =
dim (W/Radgr(f)).

14. By Exercise 13, dim(V) — dim(Radr(f)) =
dim(W) — dim(Radgr(f)). Since dim(Radr(f)) =
dim(Radg(f)) = 0 it follows that dim(V) = dim(W).

15. Since f is alternating, f(u + v,u +v) = f(u,u) =
f(v,v) = 0. However, by bilinearity 0 = f(u + v, u +
v) = f(u,u)+ f(u,v)+ f(v,u) + f(v,v) = f(u,v)+

f (v, ) from which the result follows.

16. Note that since f is non-degenerate, dim(V) =
dim(W). Let F : W — V' be the map given by
F(w)(v) = f(v,w). Then F is a linear transforma-
tion. Since f is non-degenerate, Ker(F') = Radr(f) =
{Ow } so F is injective. Since dim(V') = dim(V) =
dim(W) it is then the case that F is an isomorphism. Let
gi : V — [ be the linear form given by g;(3_7_, a;v;) =
a; and let w; € W such that F(w;) = g¢g;. Then
(w1, ..., w,) is the required basis.

8.2. Symplectic Space

1i) S~! is an isomorphism of W onto V. We need to
show if wy,wy € W then (S™!(w), S Hws))y =
{(wy, wsy)w. Setv; = S~ (w;). Then S(v;) = w;. Since
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S is an isometry we have
(S Hw1), S~ (wa))y = (v1,v2)y
= (S(v1), S(v2))w = (w1, w2).

ii) Let w1, wo € W. Then

(w1, wa)w = ((S(wy), S(ws))y =
(T(S(wn)), T(S(w2)))x = ((TS)(w), (T'S)(w2)) x

2. Let w € U be arbitrary and w;, wy € U*. Then
(w1, u) = (wa,u) = 0. Then

(w1 + wa, u) = {(wy,u) =
(w1, u) + (we,u) =0+0=0.
Since w is arbitrary, wy + wy € U-+.

Next assume v € U,v € V! and ¢ € F. Then
flev,u) = c(u,v) =cx0=0and cv € UL.

3. Clearly U C (U4)*. By part i) of Lemma (8.12) we
have dim(V) = dim(U) + dim(U~). Applying this to
Ut we also get dim(V) = dim(UL) + dim((U+)71).
Consequently, dim((U+)+) = dim(V) — dim(U+) =
dim(U). Since U C (U+)* it follows that U = (U+)*.

4) Suppose w € Rad(U'). Then w € Ut and w €
(U+)+ = U. However, since U is non-degenerate, U N
U+ = {0} and so w = 0.

5. Set k = dim(U). By part i) of Lemma (8.12) we
have dim(V) = dim(U) + dim(U*). However, since
U is totally isotropic, U C U~ so that k = dim(U) <
dim(U%). Then 2n = dim(V) = dim(U)+dim(U~+) >
2dim(U) = 2k. Therefore, k < n.

6. Since U is totally isotropic, U C U~. Since (u, w) =
Oforallu € U and w € U™, in fact, U C Rad(U~). On
the other hand, Rad(U+) = U+ N (U+)* =U+NU C
U.

7. SetT' = T{y,)- We compute:
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(T(w), T(w)) = {u+ clu, v)v, w + clw,v)v) =
(u.w) + (u, c(w, v)v) +
(c{u, v)v, w) + (c{u, w)v, clw, v)v) =
(u, w) = c{u, v) (w, v)+
clu, v) (v,w) + A (u, v) (w, ) v, ).

Since ( , ) is alternating (v,v) =
—(w, v). Thus,

0 and (v,w) =

c(u, v){w,v) + c{u, v)(v,w) + c2<u,v><w, v, v) =

(u, w) + c(u, v){w,v) — c(u,v)(w,v) =

(u, w)

8. SetT' = Tiy,c) and S = T(y,q)- For u € V we have
(T'S)(u) =

u + d{u, w)w + c(u, v)v + (cd) (u, w){w, v)v.

On the other hand, (ST')(u) =

u + c(u, v)v + d{u, w)w + (de){u, v){v, w)w

If (v,w) = 0 then (ST)(u) = (TS)(u) =
c(u, v)v + d{u, w)w and S and T' commute.

u +

Conversely, assume ST = T'S. Then (u, w){w,v)v =
(u, v) (v, w)w for every vector w. If (v, w) is linearly
dependent then clearly v L w. Assume (v, w) is lin-
early independent. Then we must have (u, w){w,v) =
0 = (u, v){v, w) for every vector u. Since a vector space
of dimension n cannot be the union of two subspaces of
dimension n — 1, particular, V' # v+ U w*. Choose
w € V suchthat v £ v [ w. It then must be the case
that (v, w) = 0.

02/06/15 3:12 pm



8.3. Quadratic Forms and Orthogonal Space

85

9. The number of non-zero vectors is ¢ — 1. There are

2n—1 1

this many choices for u. There are ¢ vectors in u

and hence ¢*" —¢?"~! vectors x such that (u, ) # 0. For

any such vector x there is a unique vector v in Span(x)
such that (u, v) = 1. Since there are ¢ — 1 non-zero vec-
_2n—1 o2m—1

2n
tors in Span(x) there are % =q

such that (u,v) = 1. Thus, the number of such pairs is
q2n—1(q2n _ 1)

10. We proceed by induction to prove that the number

vectors v

of hyperbolic bases in a non-degenerate 2n—dimensional
symplectic space over [F is q"2 H?:l(q% —-1).

The base case, n = 1 follows from Exercise 9. Sup-
pose there are ¢" [T, (¢** — 1) hyperbolic bases in a
non-degenerate 2n—dimensional symplectic space over
F,. and assume that (V,(, }) is a non-degenerate sym-
plectic space of dimension 2n + 2. By Exercise 9 there
are ¢*"T1(¢?"*2 — 1) pairs (u,v) with (u,v) = 1. Set
W = Span(u,v)t. Then W is a non-degenerate space
of dimension 2n. By the inductive hypothesis there are
¢TI, (¢* — 1) hyperbolic bases B in W. We ob-
tain a hyperbolic basis for V' by adjoining (u,v) to B.
Since there are ¢?"*1(¢?"*2? — 1) choices of (u,v) and
¢TI, (¢% — 1) choices of B there are

2 .
q2n+1(q2n+2 _ l)qn H(qm o 1) _
=1

n+1
qn2+2n+1 H(q2i _ 1) _
i=1

n+1

2 .
¢ [ - 1)

i=1

Now suppose dim (V') = 2n. If we fix a hyperbolic ba-
sis B then any isometry T takes B to a hyperbolic basis
T(B’). On the other hand, T is uniquely determined by
its image on a basis. Therefore there is a one-to-one cor-
respondence between isometries and hyperbolic bases and
this implies that |Sp(V)| = ¢" TT1_ (¢% — 1).

11. Clearly, U c (UY)‘. By Lemma (8.12) i)
dim(V) = dim(U) + dim(U+) = dim(Ut) +
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dim((U+)*).Therefore dim((U+)4) = dim(U) so we
have equality.

8.3. Quadratic Forms and
Orthogonal Space

li) Let v € V5 and set w = S~ !(v). Then S(u) = v.
Thus,

$1(S7H(v)) = ¢1(u) = ¢2(S(u)) = ¢2(v).

ii) Let w € Vi. Then ¢1(u) =
¢3(T(S(u))) = ¢3((T'S)(u)).

2. Setn = dim(V). A vector v € Rad(V) if and
only if [v]g is in the null space of the matrix A. There-
fore dim(Rad(V)) = nullity(A). Then the rank of
(V,¢) is equal to dim(V) — dim(Rad(V)) = n —
dim(Rad(V)) = n — nullity(A) = rank(A).

3.p(y) =y — 2§Z:§w = y since (y,x) = 0. On the

other hand,

(z, )

(z, x)

ple) =a —2 r=x—2x=—=x.

4. Choose a singular vector v and let u,, = wu. Let
v be a vector in w’ but not a multiple of w so that
ut = Span(u,v). The vector v is non-singular and, in
fact, for every ¢ € F,v, = cu +v € u'’ and is non-
singular. Then v;- is a non-singular two dimensional sub-
space and contains the singular vector w. There is then a
second singular vector which we denote by ..

On the other hand, suppose w is a singular vector,
Span(w) # Span(u). Then w has dimension two and
wt # ut = Span(u,v). It follows that w intersects
Span(u,v) in a one-dimensional subspace different from
u and therefore contains a vector aw + bv with b # 0.
Then w is orthogonal to 7w + v and hence w = u,
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where ¢ = % Thus, we have a one-to-one correspondence
between P(V') and F U {c0}.

5. Replacing u, and v2 by scalar multiples, if necessary,
we can assume that (uq, u2) = (v1,v2) = 1. By Lemma
(8.25) there exists an isometry T" such that T'(uy) = v;.
Set v, = T'(us). Then since T is an isometry (vy, vh) =
(u1,u2) = (v1,v2) = 1. Now by Lemma (8.26) there
exists an isometry S such that S(vy) = vy, 5(v)) = vs.
Then (ST) is an isometry and (ST)(u;) = T(v1) =
vy, (ST)(uz) = S(vh) = va.

6. Let U, W be totally singular subspaces which are not
properly contained in a totally isotropic subspace. As-
sume dim(U) = k,dim(W) = [ with k < [. Choose
any subspace X of W of dimension k. Since dim(U) =
dim(X) = k U and X are isomorphic. Since U and X
are totally singular any isomorphism S : X — U is an
isometry. By Witt’s theorem there is an isometry of S
such that S restricted to X is S. Now set W/ = S(W).
Then W’ is a totally singular subspace which contains
U. By our assumption that U is a maximal totally singu-
lar subspace it follows that W/ = U and so dim(U) =
dim(W") = dim(W).

7. The proof is by induction on n = dim(V). Sup-
pose n = 1. Let V = Span(v) and T an isome-
try, ' # Iy. Then T(v) = —v and T = p,. As-

sume now that dim(V’) = n + 1 and the result has been
proved for spaces of dimension n. Let v € V be a non-
singular vector and T" an isometry. Set w = T'(v). Then
d(w) = ¢(T'(v)) = ¢(v) # 0. By the proof of Theorem
(8.11) there is an isometry S which is a product of at most
two reflections such that S(v) = w. Set 77 = S~!T.
Then T'(v) = v and T’ leaves w= invariant. The sub-
space v is non-degenerate. By the inductive hypoth-
esis there are non-singular vectors uq, ..., u; from vt
such that 7" restricted to v is the product of the re-
flections p; = pa,, restricted to v*. It then follows that
T = Sp1 ... ps, aproduct of reflections.

8. By Exercise 7 an isometry is a product of reflections.
Since det(py) = —1 for  non-singular it follows that the
determinant of an isometry is 1.
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92) ¢(Tiu.v)(2)) = 6(2 + (2,v)u — (2, u)v) =

(;S(Z) + ¢(<Z, 'U>'u - <Z,’LL>'U) + <Z7 (z,v)u - (z,u)v)>
Since (z,v)u — (z,u)v is a singular vector we get

= ¢(2) + (2, (z,0)u — (z,u)v)) =
(]5(2) = <z,v><z,u> - <Zvu><zav> =
P(2).
b) If z € Span(u,v)* then (z,u) = (z,v) = 0 and
T(uﬂ,)(z) = Zz.

o) Since (T(w,v) — Iv)(2) = (z,v)u — (z,u)v €
Span(u,v) we clearly have Range(T(y,) — Iv) C
Span(wu,v). On the other hand, there exist vectors 21, zo
such that (z;,u) = 0,(z1,v) = 1 and (z2,u) =
1,(z2,v) = 0.

We then have (T(y,) — Iv)(21) = (21, v)u = u. Simi-
larly, (T(uﬂ,) —Iy)(z2) = —v.

10a) Set T' = T4, —co) @and S = T{y, cv)- Then
S(z) =z + ¢z, v)u — c(z,u)v.

Set w = ¢{z,v)u — ¢(z,u)v. Then w is orthogonal to
u, v and consequently, T'(w) = w. Then

(TS)(z)=T(z4+w)=T(z) +w =
z—c(z,v)ut+cz,u)pvtw=z—-—w+w==z.
b) Set S = T(w,cv), I = T(w,dv)- Then
T(z) =z + d(z,v)u — d{z,u)v.
Set w = d(z,v)u — d(z,u)v. Then S(w) = w. There-

fore

(ST)(z) =S(z+w) =z+c(z,v)u—c(z,u)v+w =
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z+c(z,v)u — c(z,u)v + d{z,v)u — d(z,u)v =
z+ (c+d)(z,v)u— (c+d){z,u)v = (w,2)g + (2, 2)g.
T, (c+ay)(2)- Therefore (z,x)s = 0 for every € Span(u,v)’ so

I1. Set T' = T{4 4, then

T(z)=z+(zy)z— (z,2)y =
z + (z,cu + dv)(au + bv) — (z,au + bv)(cu + dv) =
z + (ac)(z,u)u + (bd)(z,v)v + (ad)(z, v)u+
(be){z,u)v — (ac)(z, u)u+
(bd)(z,v)v — (ad){z,u)v — (bd){z,v)u =
z + (ad — be)(z,v)u — (ad — bc)(z, u)u

Tu,(ad—beyv) (2)-

12. We compute T{y, go)(w) :
T(u,d'v)(w) =w-+ <wa d’u)u - <wv u> (dv) =

w + d{w,v)u = w + du.

Thus, we must take d = c.

13. Assume * € ub. Then ¢(Jun(x)) = ¢(z +

(@,v)ou) = ¢(x) + (,v)30(u) + (. (@, v)ou)s =
¢(x) since u is singular and « L u.

14. Since V = Span(u,w) & Span(u,w)” there is a
vector z € Span(u,w)* and scalars a and b such that
D(w) = aw + bu + z. Note that ¢p(aw + bu + z) =
ab + ¢(z). Since 0 = ¢p(w) = ¢(D(w)) we have ab +
¢(z) =0.

Next note that a = (aw + bu + z,u)y = (D(w), u)y =
(w,u)y = 1.

Now suppose * € Span(u,v)-. Then D(zx)

0w (x) = x. Consequently,

(w,z)y = (D(w), D(x))g = (W +bu+ 2z, 2) =
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that z € Span(u,v) in which case we can assume that
x is a multiple of v. Thus, there is a scalar ¢ such that
D(w) = w + cv — c2p(v)u. Now let € ut be chosen
such that (v, &)y = 1. Then D(x) = dy () = = + u.
We then have

(w,x)y = (w+cv — P(v)u, T +u)y =

<’UJ,£L‘>¢ + C<’U,£L'>¢ + <w7 ’U,>¢ =

(w,x)p +c+ 1.

We can finally conclude that c = —1 and D(w) = w —
v + ¢(v)u as claimed.

15. By Exercise 14 it suffices to prove for € u™ that
5u,v5u,w(w) = 5u,'u+w(w)~

O, 00,0 () = bun(® + (T, W)pu) =
Ou,0 () + Ou (2, w)pu) =
z + (2, v)pu + (@, w)su =
T+ ((z,0)4 + (T, w)g)u =

T+ (T, v+ W)t = dy viw(T).

16. By Lemma (8.21), V has an orthogonal ba-
sis (v1,...,v,). Order the basis vectors such that
d(v1),...,0(vr) # 0and ¢(vg) = 0forr < k < n.
Set a; = ¢(v;) for 1 < i < r and let b; be chosen such
that b? = a,. Replacing v;, if necessary, with b%vz we can
assume that ¢(v;) = 1 for 1 < ¢ < r and ¢(v;) = 0 for
r < 1 < n. We have shown that the matrix of a quadratic
form over the field F is congruent to one and only one
L Orxn—r ) Thus, two
On—rxn-—r

orthogonal spaces of dimension n over [F are isometric if
and only if they have the same rank.

n—rxr

of the matrices <
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17. Let M be a subspace such that ¢(u) > 0 for all non-
zero vectors u € M. Let (vy,...,v,,) be an orthogonal
basis of M which exists by Lemma (8.21). As in Exer-
cise 16 we can assume that ¢(v;) = 1 for 1 < i < m.
Now suppose M7, My € P are maximal with dimensions
m;,i = 1,2. Let (vy4,..., U, ;) be an orthonormal ba-
sis of M;. We claim that m; = mso. Suppose to the
contrary that m; # ms. We may assume and without
loss of generality that m; < ma. Let o be the linear
map from U = Span(vig,...,Um, 2) to M7 such that
o(vj2) = vj1 for1 < j < my. Then o is an isometry. By
Witt’s theorem there exists an isometry S of V' such that S
restricted to U is 0. Set M4 = S(Mz). Then S(Ms) € P
and S(M>) properly contains M7, a contradiction. Thus,
m1 = mo and the map S is an isometry of V' which takes
M, to M;.

18. By Lemma (8.21) there is an orthogonal ba-
sis (v1,v2,v3) for V. First suppose that at least
two of  (v1),¢d(v2), #(v3) are squares, say ¢(vy) =
a?, ¢(v2) = b*. Then replacing v by 2v; and v, by Fv,
we can assume that ¢(vq) = ¢(vy) = 1.

The following is well-known and proved in a first course
in abstract algebra (it depends on the fact that the multi-
plicative group of the field [F, is cyclic): for any ¢ € I,
there are d, e € [, such that ¢ = d? + €2 In particular,
this applies to —¢(v3). Now if d? + e? = —@(v3) then
¢(dvy + evy +v) = 0.

On the other hand if ¢(v;) and ¢(vz) are non-squares in
IF, then replace ¢ with d¢ where d is a non-square. Then
we can apply the above. Since the singular vectors of ¢
and d¢ are the same we are done.

19. The proof is by induction on n. If n < 3 then this fol-
lows from Exercise 18. So assume that dim (V) =n > 3
and the result is true for all spaces of dimension less than
n. Since dim(V') > 3 by Exercise 18 there is a singular
vector v. By Lemma (8.24) there exists a singular vector
w such that (v, w)s = 1. Set U = Span(v,w)* which
is non-degenerate of dimension n—2. Seth = | 252 |. By
the inductive hypothesis there exists a totally singular sub-
space M of U, dim(M) = h. Then M' = M & Span(v)
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is a totally singular subspace of V, dim(M’) = [ 251 ].

20. When m = 1 there are two singular subspaces of di-
mension one, each with ¢ — 1 non-zero vectors so there
are altogether 2(q — 1) singular vectors when m = 1
which is equal to (¢™ — 1)(¢™ ! + 1). Assume we have
shown that in a space of dimension 2m (maximal Witt in-
dex) there are (g™ — 1)(¢™ ™! + 1) singular vectors and
that dim(V) = 2(m + 1). Let v, w be singular vec-
tors with (v,w) = 1 and set U = Span(v,w)*. Let
A(v) be the singular vectors u such that w 1 v and
Span(u) # Span(v) and I'(v) the singular vectors z
such that v J z. Count |I'(v)| first. Note that v has
dimension 2m — 1 and therefore there are ¢?™ — ¢!
vectors in V' \ v*. Let  be any vector such & / v. Then
in Span (v, x) there are ¢ — ¢ which are non-orthogonal
to v. Consequently, the number of non-degenerate two di-
mensional subspaces which contain v is %. Any
such two dimensional subspace contains ¢ — 1 singular
vectors which are not orthogonal to v and we can con-
clude that

)=o)

Now suppose u € v+, Span(u) # Span(v). Then
Span(u,v) is a totally singular two dimensional sub-
space and has ¢2 — g such vectors. Now w* N Span(u,v)
is a one-dimensional singular subspace contained in U.
By the inductive hypothesis there are (¢ —1)(¢™~* +1)

(@™ =1)(g™ 1+1)
q—1

singular vectors in U and therefore such

subspaces. It now follows that

N e

q(qm _ 1)(qm—1 + 1)

Finally, there are ¢ — 1 singular vectors in Span(v). Thus,
the number of singular vectors is

(=D +q(@" =)@ "+ 1)+ —g?m 2
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After simplifying we get (g™ — 1)(¢™ + 1).
21. This follows from the proof of Exercise 20.

22. It follows from Exercises 20 and 21 that the number
of hyperbolic pairs is (¢™ — 1)(¢™ ! + 1)¢*™~2. The
result follows from a straight forward induction on m.

23. Need to do induction on m. Assume m = 1.
Let x be an element of V such that ¢(x) = 1 and let
y € x' and set d = ¢(y). There are then 2(q + 1)
pairs (u,v) such that ¢(u) = 1,¢(vv) = d. For any
such pair the linear map 7(ax + by) = au + bv is
an isometry and every isometry arises this way. Thus,
[O(V,¢)] = 2(¢ + 1). Now assume that m > 1.
We can show by induction that the number of singu-
lar vectors is (¢™ + 1)(¢™ ! — 1) and the number of
hyperbolic pairs is ¢ 2(¢g™ + 1)(¢™~* — 1). Then
we can show by induction that the number of sequences
(1,91, -+, TTm—1,Ym—1) such that (z;,y)y = 1 for
1<i<m-1landz; L z;,z; L y;,y; L y; for
i # jis (g + 1)(q = DI (¢% — 1). The or-
der of O(V, ¢) is obtained by multiplying this number by
20g+ 1) 1o get 2¢°(3) (g™ + DI (g% — 1),

8.4. Orthogonal Space,
Characteristic Two

1. Let v be a singular vector in (V, ¢). By Lemma (8.29)
there is a singular vector w such that (v, w)s = 1 and
then (v, w) is a basis for V. Suppose x = av + bw is
in Rad(V, ¢), Then, in particular, (x,v), = 0. However,
(x,v)y = (av + bw, v), = b, whence b = 0. Similarly,
a=0andx = 0.

2. Suppose to the contrary that dim(M;) #
dim(Ms). Then without loss of generality we can as-
sume dim(M;) = my < mg = dim(Ms). Let M}
be a subspace of My, dim(M}) = my and choose bases
(V1,4 .., Um, ) for M;,i = 1,2. Let o be the linear
transformation from M to M} such that o(ve;) = vy 4.
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Then o is an isometry. By Witt’s theorem there exist an
isometry S of V such that S restricted to M} = 0. But
then S(My) is totally singular subspace of V and S(Ms)
properly contains M, a contradiction.

3. By Witt’s theorem there exists an isometry S on V such
that S(X) =Y. Then S(X*) = Yt sothat X+ and Y+
are isometric.

4. This follows immediately from Theorem (8.15)

0 1
5. Span | 0 ]| and Span | 1
1 0

I
6. Set B = Bx UBy. Let J = Om Im . Suppose
I"YL Om

T is an operator on V and My (B,B) = M. Then T is

an isometry if and only if M*"JM = J. Now let S be an

operator on V' and assume that S(X) = X,S(Y) =Y.
MX Om

Th B,B) =

follows that S is an isometry if and only if MY My = I,,,.

>. From the above it

7. Let c be a scalar and v = v; + vy a vectorin V; & V5.
Then

o(c(vy + vvg))

@(cv1 + cvg)

¢1(cv1) + d2(cv2)

= 2¢1(v1) + Aoa(v2)
= g1 (v1) + da(v2)

= (v +v2) = 7¢(v)

Assume v = v1+vo and w = wy +wy withvy, w; € V
and vy, wo € V5. Then

(v1 +v2,wy +wa)g =
P([v1 +va] + [w1 +wsa]) — d(v1 +v2) — P(w1 +wa) =
P([v1 +wi] + [v2 + wa] — P(v1 +v2) — p(w1 +w2) =

d1(v1 + w1) + ¢2 (v + we)—
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P1(v1) + P2(v2) + d1(w1) + d2(ws)) =
[¢1(v1 +w1) — d1(v1) — d1(wr)]+
[P2(v2 + w2) — d2(v2) — P2(w2)] =
<v1a w1>¢1 + <’02, w2>¢2'
8. Hi L H, is non-degenerate space of dimension four

and Witt index 2. It therefore suffices to prove that £y L
FE5 has Witt index two. Ey L FEs is isometric to (IF4, 0)

a
where ¢( i =a? 4+ ab+b%6 + c® + d? + d?5. Check
d
1 0 1 0
0 1 0 1
h J_ = = .
that 1 0 and ¢ 1 &( 0 0
0 1 0 1

1. (m,0) = (1,0).

2. (m,0)=1(2,1)

3. 2 | -] |2
0 2 ¥3
V2 -2 i

42| (-1].[1]:
¥z 2 1

5. The number of congruence classes is equal to the num-
ber of triples (, v, () € N3 such that 7 + v + ¢ = n. This
: n+1

is ("371).

6a) Let m be the Witt index. We know the rank, p = n
and 7 + v = n. Also, m = min{rm,v} and therefore
(m,v) = (m,n—m) or (n—m, m). Since n is odd one of
m, v is even the other is odd and therefore one of m,n—m
is even and the other is odd. If det(A) < 0 then v is odd
and if det(A) > 0 then v is even. Thus, m and the sign
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of det(A) determine 7 and v. Note, for each m there are
two classes of isometry forms.

b) If m is the Witt index and m < % then we can have
(m,v) = (m,n —m) or (n — m,m). Thus, there are two
isometry classes.

¢)If m = % then (7,v) = (m,m) and there is a unique
isometry class of forms.

7. That [, ] is bilinear follows from the bilinearity of
(, ) and the linearity of 7. We therefore have to show
that ([z,y] = [y, x]. However [x,y] = (x,T(y)) =
(T'(x), y) since T is self-adjoint. Since (, ) is symmetric,
we have (T'(x),y) = (y, T(x)) = [y, ] as required.

8. Fix y € V and define F, : V — Rby Fy(z) =
[,y]. Then F, € V' = L(V,R). Then there exists a
unique vector 7'(y) € V such that Fyy(xz) = (x,T(y)).
We have defined a function T : V' — V such that [z, y] =
(x,T(y)). We have to show that T is linear and then a
symmetric operator.

Lety1,y2 € V. Then (z,T(y1, +y2)) = [®,y1 + ya] =

[, 91] + [, 9] = (@, T(y1)) + (x, T(y2)) =
(2, T(y1) +T(y2))-

It follows that T'(y1 + y2) = T(y1) + T(y2).

Now suppose c¢ is a scalar and y € V. Then [z, cy| =
(z,T(cy)). On the other hand, [z,cy] = c[z,y] =
(x,T(y)) = (x,cT(y)) and consequently, T(cy) =
¢T'(y). Thus, T is an operator on V.

Since [ , | is a symmetric bilinear form we have
(,T(y)) = [v,y] = [y, 2] = (y,T(x)) = (T(x),y),
the latter equality since ( , ) is symmetric. This implies
that 7" = T and T is a symmetric operator.

9. i) implies ii). Since A is symmetric there exists an
orthonormal basis B = (vy,...,v,) of R™ consisting of
eigenvectors. Assume Av; = a;. Since v*" Av > 0 for
all v € R", in particular, v{" Av; = a; || v; |*> 0 which
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implies that a; > 0. Set u; = \/%'vl and let @ be the

matrix with columns equal to the u;. Then Q" AQ = I,,.
ii) implies iii). Assume A is congruent to the identity
matrix. Then there is an invertible matrix P such that
P"AP = I,,. Then (P~ 1)I"[,P~' = A.SetQ = P~ L.
Then A = Q" Q.

iii) implies i). Let v € R"™ Then v"Av =
(0" Q")(Qv) = (Qv)"(Qv) =]l Qu |*> 0 unless
Qv = 0. Since @ is invertible, Qu = 0 if and only if
v=0.
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Chapter 9

Sesquilinear Forms and Unitary Spaces

9.1. Basic Properties of
Sesquilinear Forms

1. Letv € Vand ¢ € F. Then (T0S)(cv) = T(S(cv)) =
T(o(c)S(v)) = 7(o(e))T(S(v)) = (Toa)(¢)[T o S](v).

Thus, T' o S is a T o o-semilinear map.

2. Let f,g € S,(V). We need to prove that f + g €
So(V). Let v1,v9,w € V. Then

(f+g)(v1+v2,w) = f(v1+v2,w)+g(v1 +v2,w) =

[f(v1,w) + f(v2,w)] + [9(v1, w) + g(v2, w)]

[f (o1, w) + g(v1, w)] + [f(v2, w) + g(v2, w)]
(f + 9)(v1,w) + (f + g)(v2, w).

That (f + g)(w,v1 + v2) = (f + g)(w,v1) + (f +
g)(w, v2) is proved in exactly the same way.

Now suppose v,w € V and a € F. Then

(f +g)(av,'w) = f(a'v,w) + g(av,'w) =
af(’l), w) + ag(v,'w) = a[f(”?“’) + g(’v, ’U})] =

al(f + g)(v, w)].

Also,
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(f +9)(v, aw) = f(v,aw) + g(v, aw) =
o(a)f(v,w) + a(a)g(v,w) =
a(a)[f (v, w) + g(v, w)] =
o(a)[(f + 9)(v, w)].

Thus, f + g € S, (V).

Now assume f € S,(V),c € F. We must show that
cf € S;(V). Let vy, v, w € V. Then

(cf)(v1 + vg, w) = c[f(v1 + vy, w)] =
c[f(v1, w) + f(va, w)] = cf (v1,w) + cf (v2, w) =
(ef)(v1, w) + (cf)(va, ).

That (af)(w,v1 + v2) = (af)(w,v1) + (af)(w,v2) is
proved in exactly the same way.

Finally, let a € F, v, w € V. Then

(ef)(av,w) = cf(av,w) = caf(v,w) =

acf (v, w) = alcf (v, w)] = a[(cf)(v, w)].

(cf)(v,aw) = cf (v, aw) = co(a) f(v,w) =

(0(a)e) f(v,w) = a(a)lcf (v, w)] =
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a(a)[(cf)(v, w)].

3. Assume A = M (B, B) =
ai1 A1n bl C1
: Julp=1| 1 |,and [v]p =
anl Apn by Cn
Then
flu,v) = f(z bivi, Z ¢jv;) =
i=1 j=1
> D biaijoley) =
i=1 j=1
[u]if Ao ([v]B).
4. Let B = (vy,...,v,) be a basis. Denote by g; the o-

semilinear map from V' to F given by g;(w) = f(v;, w).
We claim that (g1, ...,g,) is linearly independent. For
suppose Y ., a;g; = Oy_r. Then forallw € V,

> aigi(w) = aif(vi,w) =0
i=1 i=1

Consequently, f(};, av;,w) = 0. Thus,
Yot av; € Radp(f) = {Ov}. Since (vy,...,v,) is
linearly independent it follows thata; = --- = a,, = 0.

Thus, (g1,...,9n) is linearly independent as claimed.
Since the dimension of the space of o-semilinear
maps from V to F is equal to dim(V') = n it follows
that (g1,...,9,) is a basis for this space. Since F'
is a o-semilinear map from V to I there are unique
scalars by,...,b, such that F = " bg;. Set
v = bjvs + -+ + byv,. Then F(w) = f(v,w) for all
weV.

5. i. Assume f is Hermitian and 1 < 4,57 < n. Then
aji = f(vj,vi) = o(f(vi,v;)) = o(ai;) = aij. Thus,
Afm = A. Conversely, if A" = A then f(vj,v;) =
o(f(vi,v;)). Suppose v = byvy + - -+ + by, and w =

c1v1 + -+ + ¢cpv,. Then

fw,v) = [w]g Ao([v]s).
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Since f(w,v) is a scalar we have

[w]g Ao ([v]s) = o([v]g A" [w]s =

o([v]go(AM)o([w]s) = o(f (v, w)).

ii. This is proved exactly as i.

6. Let g; be the o-semilinear map such that g;(v;) =
1 and g;(v;) = 0 for j # i. By Lemma (9.5) there is
vector v} such that f (v}, w) = g;(w). Thus, f(v},v;) =
gi(vi) = Land f(v},v;) = gi(v;) = 0.

7. Assume o2 = Iy. Then f is Hermitian, hence reflexive.
To see this, letv = >, a;v; andw = >, b;v}. Then

flv,w) = Zaia(bi).
i=1
On the other hand,
flw,v) = bio(ay).
i=1

If 02 = Iy then f(w,v) = o(f(v,w)) so f is Hermitian
and reflexive.

Assume dim(V) > 2 and 02 # Iy. Leta € F,0%(a) #
a. Then

f(o(a)vy + v2,v1 — ave) = o(a) — o(a) = 0.

On the other hand,

fv1 — avy, 0(a)vy 4+ v9) = 02(a) —a # 0.

8. We can view [ as a two dimensional vector space
over E. The map try w is a linear map. Therefore ei-
ther ¢rp g is the zero map or it is surjective. Suppose the
characteristic of I is not two. Then the map a — —a is
not an automorphism of I and there exists an a such that
a+o(a) # 0. If follows that in this case the map is surjec-
tive. Suppose the characteristic is two. Since o # [y there
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is an a such that a # o(a) which implies that a+o(a) # 0
and once again the map is surjective.

9.2. Unitary Space

1. Suppose (v1,...,v,) is linearly dependent. Then
for some k, vy, is a linear combination of (v1,...,vk_1).
Say v = a1v1 + -+ + ap—1Vk—1. Then f(vy,vi) =
fog,a1v1 + - + ag—1v,—1) = arf(vg,v1) + - +
ag—1f(vg,vE—1) = 0 which contradicts the assumption
that f(v;,v;) #0forl <i<n.

2. If T is an isometry then f(T(v;), T (v;)) = f(w;, w;)
for all ¢ and j. Conversely, assume that f(w;, w;) =
f(v;,v;) forall i and j. Assume v = > " | a; VW =
> i1 biv;. Then f(v,w) =

f( Z a;V;, Z biv;) = Zaiaf(vi, v;).
1 i=1

i=1m =

On the other hand, T'(v) = Y"1, a;T(v;) = > 1, a;w;
and, similarly, T'(w) = ", b;w;. Then

J), T () = () awi, Y baws) =

n

Z aiFif(wia wj) = f(va 'UJ)

i=1
3. Since f is non-degenerate there exists a vector u such
that f(v,u) # 0. Now the result follows from Lemma
(9.14).

4. Let *x = av; + bwy,y = cv; + dwy. Then
f(x,y) = ao(d) 4+ bo(c). By the definition of T we
have T'(x) = avy + bws, T(y) = cvy + dwy. We then
have f(T'(x), T(y)) = f(avz + bws,cvz + dwz) =
ac(d) + bo(c).

5. Suppose to the contrary that dim(U;) #
dim(Us). Then without loss of generality we can assume
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dim(Uy) =1 < m = dim(Us). Let (vy,...,v;) be a
basis for Us and (wy, ..., w,,) a basis for Uy. Let 7 be
the linear transformation from Span(ws,...,w;) — Us

such that 7(w;) = v;. Then 7 is an isometry. By Witt’s
theorem there is an isometry 7" of V' such that T restricted
to Span(wy, ..., w;) is 7. Set U} = T(Us). Then U} is
a totally singular subspace of V' and U} properly contains
U,, contradicting the assumption that U; is a maximal to-
tally singular subspace.

6. By Witt’s theorem there is an isometry 7" of V' such that
T(Uy) = Us. Letx € Uy and y € T(U;y)*. We claim
that f(z,y) = 0 from which it will follow that T'(U{-) C
Us-. Since Uy = T'(Uy) there is a vector u € U; such that
x = T(u). Sincey € T(Uji") thereis av € Uj- such that
y =T(v). Now f(z,y) = f(T(u), T(v)) = T(u,v) =
0. Now dim(Ui) = dim(V) — dim(Uy) = dim(V) —
dim(Us) = Us-. Since dim(T(Ui)) = dim(Ui-) it now
follows that T(U") = Us.

7. Let z be an anisotropic vector and let y € . Since
N is surjective, we can assume that f(z,x) = 1 and
f(y,y) = —1. Then v = x — y is isotropic.

8. We prove this by induction on n > 2 (there is noth-
ing to prove for n = 1). The base case is covered by
Exercise 7. Assume that n > 2 and that the result has
been proved for all non-degenerate unitary spaces (W, g)
where dim (W) < n. and that dim (V') = n. By Exercise
7 the space is isotropic. By Exercise 3 there exists a hy-
perbolic pair, (,y). U = Span(x,y) is non-degenerate
and therefore U~ is a non-degenerate subspace of dimen-
sion n — 2. By the inductive hypothesis there exists an
totally isotropic subspace M, dim(M) = |“52|. Then
M’ = M + Span(x) is a totally isotropic subspace and
dim(M') = ["52] +1=3].

9. Let I be the set of all isotropic vectors and set U =
Span(I). If we can show that Span(I) = V then I con-
tains a basis of V' and are done. Fix an isotropic vec-
tor  and let y € V be arbitrary. If y is isotropic then
y € Span(I) and there is nothing to prove. So assume y
is anisotropic. If f(x,y) # 0 then Span(x,y) is non-
degenerate and by Corollary (9.3) there is an isotropic
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vector z € Span(x,y) such that f(x,z) = 1. Then
y € Span(x,y) = Span(x,z) C Span(Il). We may
therefore assume that | y. Now y= is non-degenerate
and contains @ so there is an isotropic vector u € y= such
that f(2,u) = 1 and then U = Span(x,y,u) is a non-
degenerate three dimensional subspace. Let W be a two
dimensional subspace of U containing « such that W #
Span(x,y), Span(x, ). Then W is non-degenerate and
by Corollary (9.3) there is an isotropic vector z € W
such that f(x,z) = 1 and W = Span(x,z). Then
y € U = Span(x,u, w) C Span(I).

10. The proof is by induction on n = dim(V). If
dim (V') = 1 then any non-zero vector is an orthogonal
basis. So assume n > 1 and the result is true for all non-
degenerate spaces of dimension n—1. Since (V, f) is non-
degenerate there exists a vector v such that f(v,v) # 0.
Set U = v+, a non-degenerate subspace of dimension
n — 1. By the inductive hypothesis there exists an or-
thogonal basis (v1,...,v,_1) for U. Set v, = v. Then
(vy,...,v,) is an orthogonal basis for V.
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Chapter 10

Tensor Products

10.1. Introduction to Tensor
Products

1. Assume Vj, Vs are finite dimensional and suppose
By = (v1,...,Um), B2 = (w1,...,wy,). If f exists then
we must have

f(z a;v;, Z bj’wj) = Z Z a,-bjf('vi, wj).
i=1 j=1

i=1 j=1

In fact, defining f in this way gives a bilinear function
with frestricted to By X By equal to f. On the other hand,
if V7 or V5 is not finite dimensional, then for any finite
subset Bf of B; and B) of By we can use this to define
a bilinear map on Span(B}) x Span(B}). One can then
use Zorn’s lemma to show that these can be extended to
all of V; x V5. We omit the details.

>

2. Defineamap 6 : Vi3 x Vo to Voa®V; by 8(x, y) = y®w.
This map is bilinear. Since V; ® V5 is universal for V; x Vo
there exists a linear transformation 7" : V; @V, — Vo®@V)
such that T(x ® y) = y ® x. In a similar way we get a
linear transformation S : Vo ® Vi — Vi ® V5 such that
S(y®a:) = x®y. Then ST = IV1®V2 and TS = IV2®V1~

3. Letx, 1,22 € V1,y,y1,y2 € Vo and ¢ € F. Since
f1 € L(V1,F) we have

f(x1+x2,y) = fi(x1 +x2) fo(y) =
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[f1(x1) + fi(z2)] f2(y)

By the distributive property in F we can conclude that

[fi(x1)+ fi(z2)] f2(y) = fi(@1) f2(y)+ fi(z2) fa(y) =
f(x1,y) + f(x2,y)

In exactly the same way we can prove that f(x,y; +
y2) = f(z,y1) + f(z,y2).

Now to the scalar property: f(cx,y) = fi(cx)f2(y)
[cfi(z)f2(y)] = cf(z,y). Similaly, f(z,cy) =
fil@)foley) = fi(@)lefe(y)] = [fi(z)cf2(y) =
[cfi(@)]f2(y) = c[fr(z) f2(y) = cf(z,y).

4. Let (v1,v2) be linearly independent in V' and
(w1, w2) be linearly independent in W and set =
v1 ® w1 + v2 ® we. Then x is indecomposable. Sup-
pose to the contrary that there are vectors v € V and
w € W such that * = v ® w. We can assume that
(v1,v2) and (wy,w2) can each be extended to an in-
dependent sequence (vy, ..., Vm, (W1,...,w,), respec-
tively, such that v € Span(vy,...,v,) and w €
Span(wi, ..., w,). Write v = a1+ - -+ AV, W =
biwy + - - - + b, w,,. Then

VRW = Zaibj'vi @ wj.
%]
Since {v; ® w;|1 < i < m,1 < j < n} is linearly
independent we must have a1b2 = 0 = agb; and a1b; =
1 = a2by which gives a contradiction.
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5. Set W' = Span(w,...,w,), a finite dimen-
sional subspace of W. Let (21,...,2,) be a basis for
W’. We can express each w; as a linear combination of
(2155 25) twj = D0 a2z Now 30 @ @ w; =
Dim1 e @i © 2i. However, {z; ® 2|1 < j <
n,1 < i < s} is linearly indendent and therefore each
aj; = 0 whence w; = Oyy for all .

6. Before proceeding we claim that for any basis
(x1,...,25) of V and any z € Z there are vectors
y; € Wsuch that z = f(z1,y1) + - + f(@s,Ys)-
Thus, assume that z = f(v,w1) + - + f(Vm, Wi).
We can express v; in terms of the basis (x1,..., ;) :
v; = Y.i_, aijx;. Now set y; = Z;n:l a;jw;. Then by
the bilinearity of f it follows that

z = f('Ul,'LUl) +-- 4+ f(v’m:wm) -

[y, y1) +- -+ f(xs, Ys)-

Now by hypothesis b) it follows for z € Z there are
unique y; € Wsuchthat z = f(x1,y1)+ - -+ f(xs, Ys).

Now assume that g : V x W — X is a bilinear form.
We need to show that there exists a unique linear map g :
7 — X suchthat go f = g. Clearly the only possible way
to define g is as follows: suppose z = > ©_| f(x;, y;).
Then §(z) = >.._, g(x;,y;). By the uniqueness of ex-
pression for z, g is a well-defined function. However, we
need to demonstrate that it is linear. Thus, let z, 2’ € Z.
We need to prove that g(z + z’) = g(z) + g(2').

Assume that z = > | f(x;,y;) and 2/ =
iy f(wi,y)). Since f is bilinear we have z + z’ =
>i1 f(@i yi +y;). Then

S
Gz +2)=> g(@iyi + )
=1

By the bilinearity of g we have

S

Z(Q($i>yi) +9(zi,y;) =

i=1

> 9@y +y) =

i=1
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S

Zg(wi, yi) + Zg(mz,y{) =

i=1 i=1
9(z) +9(2").

Next assume that z € Z and ¢ € F. If z =
>, f(zi,y;) then by the bilinearity of f we have cz =
iy f(=i, cy;) so that

glez) = Zg(mmcyi) = ZCg(ﬂ%yi) =
i=1 i=1

> o) = iz).

7. By the universal property of the tensor product we
know for all f € B(V,W;Z) there exists a linear map
f: V @ W — Z. Let 8 denote the map f — fso that 0
is a map from B(V,W; Z) to L(V ® W, Z). We need to
prove that 6 is linear and bijective.

We first show that 6 is additive: Assume f,g €
B(V,W;Z). Then f, g are the uniique linear maps from
V ® W to Z such that f('v ® w) = f(v,w) and
g(v @ w) = g(v,w). Now f + G is a linear map from

V @ W to Z. Computing (f 4+ 9)(v ® w) we get

~

fvew)+g(vaw) = f(v, w)+g(v,w) = (f+9)(v, w).

By uniqueness, f/+\g = f+ g.
We next show homogeneity holds: if ¢ is a scalar then
cf =cf.

cf(v@w) = (cf)(v,w) = cf (v,w) = cf(v®w)
as required.

It remains to show that 6 is an isomorphism. Injectivity is
easy: If f,g € B(V,W; Z) are distinct then there exists
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~

v € V,w € W such that f(v,w) # g(v,w). Then f(v®
w) = f(v,w) # g(v,w) = gv@w).

It remains to show surjectivity. Assume T € L(V ®
W,Z).Definet: V x W — Z by t(v,w) = T(v ® w).
Since T is linear and the tensor product is bilinear it fol-
lows that ¢ is bilinear. Thus, ¢ € B(V,W;Z). Clearly
t =T and so 6 is surjective.

8. Themap p : F x V — V given by p(c,v) = cv is
bilinear. We therefore have a linear transformation from
F ® V to V such that ¢ ® v = cv. Denote this map by
T. Define S : V- F® V by S(v) = 1 ® v. This
map is linear. Consider the composition ST (c ® v) =
S(cv) =1®(cv) = c®w so that ST = Ipgy . Similarly,
TS(v)=T(1®v)=vand TS = Iy.

9. To avoid confusion we denote the tensor product of X
and Y by X ®' Y (as well as products of elements in this
space). Define 6 : X xY - VoWbyb(z,y) =xQy
(since this is in V @ W there is no prime). By the universal
property for the tensor product there exists a linear map
h: XY — V®Wsuchthat§(a: ®y)=0(x,y) =
x ® vy (there is no / in the latter expression since this is the
tensor product of the two elements in V ® W). Since Z
is the subspace of V' ® W generated by all e/:\lements T

v, Range(@) = Z. We need to prove that 6 is injective.
Suppose §(u) = Oygw where u € X ®'Y. Then there
exists a linearly independent sequence (1, ..
X and a linearly independent sequence (y1, . . .

and scalars a;; such that u = Zij aijx; @ yj.

. &y in
»Yn) inY

We then have 6(3"; ; ai;@; @ y;) = Oygw. However,
032 jaije: @ y;) = >, ;aijz; ® y; (now this tensor
product is in V@ W). The vectors {x; ®y; € VoW1 <
i <m,1 < j < n} are linearly independent and therefore
Q5 = Oand u = 0X®/y.

10. Let (y1,...,yx) be a basis of Y7 N Ya.
Let (y1,...,Yk,w1,...,w;) be a basis for Y7 and
(Y1,-- Yk, 21, .-, Zm) be a basis for Y. Suppose u €

(VoY) Nn(V®Ys). Since wu € V ® Y] there are
unique vectors ui,...,Ug,V1,...,0; € V such that
U=u1®Y1+ - +U QY +v1 Qw1+ -+ Qwy.
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On the other hand since u € V ® Y5 there are unique
S UL, X1, ..., Ty such that w = u) Qy1 +
U QYR+ T ® 21+ -+ Ty, @ 2, However, this
implies that

vectors uf, . .

(w1 —uy) @yi + -+ (up — up) @ ypt
V1WA VOW -1 Q21— —TmR@2Zm = Ovgw.

Since (y1,..., Yk, W1, .. .y Zm) is linearly
independent by Exercise 5 we have uy —u}j = -+ =

LW, 2,

Uy — U, =V =+ =V =L = = Ly, = Oy.

Thus, u € V ® (Y1 NY>).

10.2. Properties of Tensor
Products

1. If 7 fixes one of 1, 2 or 3 this follows from the fact that
V ® W is isomorphic to W ® V by Exercise 1 of Section
(10.1). We illustrate the proof for 7 = (123). Let f : V; x
Vax Vi = Vo® V3@V givenby f(x,y,2) =yRzQ.
This is a 3-linear map. By the universal property of the
tensor product we have a linear map f: Vi@V ®Vs —
Voo VsV suchthatf(a:@y@z) =Yz z.
Likewise can define a trilinear map g : Vo x V3 x V; —
V1@ Ve ® V3 givenby g(y, z,2) = * ® y Q z. There is
then a linear map g : Vo®V3®V; such that g(y@z®x) =
TRYR z.

9f = viev,evs and fg = Iv,gviev; -

2. Ifv; € Vithen 1 ® - Q@ Sp) (01 @ -+ @ vy,) =
Sl(’Ul)@"'@Sm('Um) ERI® - QR,.VI® -V,
is generated by all vectors of the form v; ® - -+ ® v, it
follows that Range(S1 ® -+ ® Sp) C R1 Q-+ ® Ry,
We need to prove the reverse inclusion.

Suppose r; € R; = Range(S;). Let v; € V; such that
S(v;) = r;. Then (51 ® - ® Sp)(V1 @ - @ vy,) =
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S(v)®--®S(vy,) =7r1®- -1y, and consequently,
RI® ---®R,, CR.

3. We do a proof by induction on m > 2. For
the base case let dim(V;) = n; and dim(K;) = k;
for i = 1,2. Let (v1,...,v,) be a basis for K;
and extend to a basis (v1,...,v,,) for V;. Similarly,
let (wi,...,ug,) be a basis for Ky and extend to
a basis (wuq,...,up,) for V5. Note that the sequence
(S1(Vky+1), - - S1(vn,)) in Wy is linearly independent
as is the sequence (Sa2(Uky+1), - - - S2(Up,)) in Wa. Asa
consequence the set of vectors {.S1(v;) ®S2(u;)|k1+1 <
i <ny, ke +1 < j <no}islinearly independent.

Assume now that x = >, ; a;;v; ® u; € K. Applying
S1 ® Sy we get

(51® 92)(>_ aijv; @v; =

,J

> aiSi(vi) @ S(vy) =

2]

Z Z a”S(Uz) (24 S(’Uj) = 0W1®W2'

i=k1+1 j=kao+1

Since {Sl(vi) (9 Sg(’l.tj)“fl +1<i<n,ke4+1<5<
ns} is linearly independent for k1 +1 < i < nj, ko +1 <
j < ng,a;; = 0. This implies thatu € K; ® Vo + V1 ®
K2 = X1 —+ XQ.

Assume the result is true for tensor product of m spaces
and that we have S; : V; — W, for 1 < i < m. Set
VQI =Vo® - @ Vit andSé = Sg®~~~®5m+1.Then
V1® - @Vypisequalto Vi@ VY and S1 Q- - @ Sppp1 =
S1® 54 Set Kb = Ker(S5). Alsoset Y, = Ko @ V3 ®
@V, Y = V@@V 1 @K@V @ - -Q V41
By the inductive hypothesis K = Yo+« -4+ Y, 11. Also,
by the base case, K = K; ® V4 + V] ® KJ. However,
NeK,=V1®@ Yo+ - +Ynt1)=Xo+ 4+ X1
while K7 ® V3 = X;. This completes the proof.

4. Let S : F' — TF* be the transformation such that
S(v) = Av and T : F* — F™ be the transforma-
tion such that T(w) = Bw. Then A ® B is the matrix
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of the transformation S ® T : F' @ F* — FkF @ F™
with respect to the bases obtained by taking tensor prod-
ucts of the standard basis vectors in lexicographical or-
der. Then rank(A ® B) = dim(Range(S ® T)).
On the other hand, rank(A) = dim(Range(S)) and
rank(B) = dim(Range(T)). By Exercise 2 the range
of S®T is Range(S) ® Range(T) which has dimension
dim(Range(S)) x dim(Range(T)).

5. Let dim(V) = m,dim(W) = n. Assume neither S
nor T is nilpotent. Let f(x) = ps(z) and g(x) = pr(x).
Then f(z) does not divide ™ and g(z) does not divide
a™. Let p(z) # « be an irreducible factor of f(z) and
q(z) # z be an irreducible factor of g(z). Letx € V such
that us .(z) = f(z) and y € W such that pp,(x) =
q(z). Set X = (S,z)and Y = (T,y). Then X ® Y is
invariant under S ® Iy and Iy ® T and therefore under
ST =(S®Iw)(Iy®T).Set Z =X @Y and denote
by S ® T the restriction of S ® T to Z. It follows from
Exercise 2 that S ® T is surjective, therefore injective, on
Z.In particular, Ker(S ® T) is trivial. However, if S®@T
is nilpotent then for any invariant subspace U of V@ W
the kernel of the restriction of S ® T" to U must be non-
trivial. Thus, S ® T is not nilpotent.

6. Let v; € V be an eigenvector of S with eigenvalue
a; and w; an eigenvector of 1" with eigenvalue ;. Then
v; ® wj is an eigenvector of S ® T" with eigenvalue o;3;.
Consequently, S®T is diagonalizable. On the other hand,
since the eigenvalues o;3; are all distinct, the minimum
polynomial of S ® T is

11— B
i=1j=1
has degree mn and therefore S ® T is cyclic.
7. For any cyclic diagonalizable operator S : V' — V the

operator S® S : V@V — V ® V will not be cyclic. For
example, let S : R? — R? be given by multiplication by

1 0
A= <0 2).Then
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AR A=

SO N O O
= O O O

o O O =
O O N O

So, the eigenvalue 2 occurs with algebraic multiplicity 2
and the operator is not cyclic.

8. Let v € V such that ps,(z) = (z — a)* and let
w € W such that pr (7)) = (¢ — B)L. It suffices to
prove that S®T restricted to (S, v)®(T, w) has minimum
polynomial dividing (z — a/3)*!.

Setv; = v andfori < kset v, y1 = (S — aly)v;. Simi-
larly, set wy; = w and for j < [, w;11 = (T — Blw)w;.
(v1,...,v) is a basis for (S,v) and (wy,...,w;) is a
basis for (T, w). Let S be the restriction of S to (S, v)
and T the restriction of 7" to (T, w). The matrix of S with
respect to (vy, ..., vy) is the k X k matrix

a 0 0 0

1 a O 0
A= ,

0 0 O «

The matrix of T with respect to (w1, . .., w;) is

30 0 0

1 8 0 0
B:

000 .. 8

The matrix A ® B is a lower triangular kl x kl with a8
on the diagonal. This implies the result.

9. Letc,d € Kand o = Y. | a; ®F v;. Then

n

(c+d)v = (c+d)2ai®yvi = Z(C—Fd)ai@Fvi =

i=1 i=1

n

Z(cal +da;) Q@pv; =

i=1

anl®pvl+2dal®pvl—
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n n
cZai ®F vy +d2a¢ XF v =
i=1 i=1
cv + dv.
We need also to compute (cd)v:

n

(cd)® = (cd) Y a; ®pvi = Y _(cd)a; @ v; =

=1 =1

n
Zc (da;) ®F v; _chaZ Rp v; =

=1 =1
C[d Z a; QF ’Ui]
=1

10. That B is linearly independent follows from Exercise
5 of Section (10.1). We show that B spans Vk. Since every
element of Vi is a sum of elements of the form ¢ ®p w
for w € V it suffices to prove that this element belong
to Span(B). Since B is a basis for V there exist scalars
a; € F such that w = ajvy + -+ + a,v,,. Then

cRF w=cQ®p (a1 + - + apvy) =

(car) ®F v1 + ... (cap) QF v, € Span(l?).

11.  Let dim(V) = m,dim(W) = n. Then by
Exercise 11, dimg(Vkx) = m,dimg(Wg) = n.
Then dim(L(V,W)) = mn = dimg(L(Vk, Wk) =
dimg (L(V,W)k. Thus, L(Vk, Wx) and L(V, W)k are
isomorphic as spaces over K.

12. Let By = (uq,...,u,) be a basis for V; and
By = (wy,...,w,) be a basis for Vo. Let B’ be the
basis of Vi ® V5 consisting of the set {u; ® w;|l <
i < m,1 < j < n} ordered lexicographically. Let
A = Mg, (B1,B1) and B = Mg, (B3, B2) so that
Ms,gs,(B',B') = A® B. Assume the (k, [)—entry of A
is a;; and the (k,[)—entry of B is by;. Then the diagonal
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entries of A® B are a;;b;; where 1 <7 <m,1 <j <n.
The sum is then (a11 + -+ + @mm)(b11 + -+ + bpn) =
Trace(A)Trace(B).

13. Suppose FE is an elimination matrix and is upper tri-
angular. Then E ® I, is also upper triangular with 1’s
on the diagaonal and therefore det(E ® I,,) = 1 = 1™.
Similarly, if E is lower triangular then det(E ® I,,) = 1

Suppose E is an exchange matrix, specifically obtained
by exchanging the ¢ and j rows of the identity matrix I,,,.
Then E ® I,, can be obtained from the identity matrix by
exchanging rows n(i — 1) + k with row n(j — 1) + k for
1 <k < n. Therefore det(E® I,,) = (—1)" = det(E)™.

Finally, assume that F is a scaling matrix obtained by
multiplying the ¢ row of I,,, by c. Then E ® I,, is ob-
tained from the mn—identity matrix by multiplying rows
n(i—1)+kby cfor 1 < k < n and is therefore a diagonal
matrix with n diagonal entries equal to ¢ and the remain-
ing equal to 1. Then det(E ® I,,) = ¢ = det(E)".

14. If either S; or Sy is singular then so is 57 ® Sy and
then the result clearly holds. Therefore we may assume
that S; is invertible fori = 1, 2.

Let By = (u1,...,U,) be a basis for V; and By =
(wi,...,w,) be a basis for V5. Let B’ be the basis of
Vi ® V; consisting of the set {u; ® w;|1 < i <m,1 <
j < n} ordered lexicographically. Let A = Mg, (B1, Bi)
and B = Mg, (Ba, Bs) so that Mg, g5, (B, B') = A®
B. Then d@t(S1 ® SQ) = det(A X B)

Let Eq,..., E; be m x m elementary matrices such that
S1=F1Es...Eyandlet Fy,. .., F; be nxnelementary
matrices such that S = F{Fy...F;. Then A®@ B =
(B1 1) ...(Ex @ I){In @ F1) ... (I,, ® F}). Since
the determinant is multiplicative we have

det(A® B) =

det(E1®In) R det(Ek®I )det( m®F1)

By Exercise 14, det(E; ® I,,) = det(FE,
F}) = det(F;)™

;)™ and det ([, ®
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det(In,QF,).

Then
det(A® B) =
det(Eq)" ... det(Ey) det(Fy)™ ... det(F)™ =
[det(Ey) . ..det(Ey)|"[det(Fy) ... det(F)]™ =
det(A)"det(B)™

10.3. The Tensor Algebra

1. Suppose f1,fa € ®ierVi. Set Iy = spt(f1),Io =
Spt(fg). LetJ=1INI,J = {j S Ilfg(]) = _fl(])}
and J* = J\ J'. Further set I{ = I; \ J*, I}, = I, \ J*.
Then spt(f1 + f2) = HUL\J' = I; UI,U.J*. We now
compute G(f1 + f2) :

G(fi+ fo) =

>

i€spt(fi+f2)

gi([fr + f2](0)) =

>

gi([f1 + f2l(i)) =

el UILuJ*
> gillfi + £160) + D gilf + fl(0)+
i€l el
> gillf1 + () =
ieJ
Zngl + f2(7) +29Lf1 + fa(i)+
i€l] i=1I}
Z gi(f1(@) + f2(3)) =
ieJ*
D gi(AE)+ ) gi(f2(0) + D gil£1(0) + fali)) =
i€l i€l ieJ*
D ah@)+ Y g f2(0)+
i€l] iel}
> loi(£1(0) + gi(f2(0) (10.1)
ieJ=
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For i € J’ we have f1(i) + f2(i) = 0 and therefore

Zgz fl

e’

)+ fa(i)) = Ow (10.2)

Adding (10.2) to (10.1) we obtain

Z 9i(f1(2)) + Z 9i(f2(4))+

i€l i€l

D L0 (A@) + g:(f2(0) + Y gi(f1(

ieJ* i€J’

Z 9i(f1(2)) + Z 9i(f2())+

icl] i€y

Z [9:(f1(8)) + gi(f2(@))+

icJr
D a(h@)+ ) gif2(d)

ic€J’ i€J’

)+ f2(i) =

(10.3)

Rearranging and combining the terms in (10.3) we get

Z g9i(f1(7)) + Z

el uJ*uJ’ ieILuJ*uJ’

gi(f2(3))  (10.4)

Since spt(f1) = I UJ*UJ and spt(fa) = ILUJ*UJ
we get (10.4) is equal to

Z g9i(f1(8)) +

i€spt(f1)

Z 9i(f2(i)) =

i€spt(f2)

G(f1) +G(f2)

Now suppose f € @;crV; and 0 # ¢ € Fis a scalar. Then
spt(cf) = spt(f). Now

Glef)= Y gllefl@)= 3 g:lefl@) =

i€spt(cf) i€spt(f)
Y gl = Y enlf) =
i€spt(f) i€spt(f)
¢ alf) = Glf).
i€spt(f)
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2. Since S : V — W is surjective, each S ® --- ® § :
T (V) — Ty (W) is surjective by part i) of Lemma (10.2).
It then follows by Lemma (10.3) that 7 (.S) is surjective.

3. Since S : V. — W is injective, each S ® --- ® S :
T, (V) — T (W) is injective by part ii) of Lemma (10.2).
It then follows by Lemma (10.3) that 7 (.S) is injective.

4. This follows immediately from part iv. of Lemma
(10.2).

5. The eigenvalues are: 8, 27, 125 (with multiplicity 1)
12, 20, 18, 50, 45, 75 (with multiplicity 3) and 30 (with
multiplicity 6).

6. Let S(v1) = 2v1, S(v2) = 3va. Then v1 @ V2, V2 @V
are both eigenvectors of 72(S) with eigenvalue 6. Thus,
T2(S) is not cyclic.

7. This is false unless RS = SR = Oy _,v. Even taking
R = S = Iy gives a counterexample. In that case R +
S = 2Iy and T(R) + T (S) = 2I7(v) and every vector
in 7(V') is an eigenvector with eigenvalue 2 for 2/7y).
On the other hand, vectors in 73(V') are eigenvectors of
T2(2Iy) with eigenvalue 4.

8. This is false. For example, let V' have dimension 3
with basis (v1, va,v3). Set X = Span(vi,ve) and Y =
Span(xs) and S = Proj x,y). Then Ker(S) =Y. Now
Ky = Ker(T2(5)) =V ®Y +Y ® V has dimension 6
and therefore 72(V')/ K> has dimension 3. On the other
hand, dim(V/Y) =2 and T3(V/Y) = 4.

9. This is an immediate consequence of the definition of
the tensor product.

10. Assume S’ = 0y _,y. We claim that 75, (S)*—F+1 =
07,.(v)—7:(v)- To see this note that 7(S) = (S ® Iy ®

@Iy Iy @S®-@Iy)...(Ively @ ®595)
where in each case there is tensor product of k£ maps, one

is .S and all the others are Iy,. These maps commute and
therefore 7y (S)*—k+1 =

L
where the sum is over all non-negative sequences
(j1,-..,Jk) such that j; + -+ + jr = kl — k + 1. By

@ Gk (10.5)
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the generalized pigeon-hole principle some j; > [ which
implies that S = 0y _,1y and hence each term in (10.5)
is zero.

11. The formula is T7(7%(S)) = Tr(S)*. The proof
is by induction on k. By Exercise 13 of Section (10.2)
Tr(S ® S) = T’I"(S) Assume the result is true for
k: Tr(Tw(S)) = Tr(S)k. Again by Exercise 13 of
Section (10.2) T'r (E+1( ) = Tr(Tp(S) ® S) =
Tr(Ti(8))Tr(S) = Tr(S)*Tr(S) = Tr(S)**.

12. We claim that det(Ti(S)) = det(S)*"". We do
induction on k£ > 1. When k£ = 1 the result clearly
holds. Also, for k = 2 we can apply Exercise 15 of Sec-
tion (10.2) to obtain det(S ® S) = det(S)"det(S)™ =
set(S9)?" as required.

Assume now that det(7,(S)) = det(S)k"k_l. Now
Ter1(S) = Ti(S) ® S. The dimension of 7 (V) = n*.
Then by Exercise 15 we have
det(Tr+1(S)) = det(Te(S) ® S) =
det (T, (S))"det(S)™" =
(det(S)™" " yndet(S)"" =
det(S)*" det(S)"" = det(S)*+1n".

10.4. The Symmetric Algebra

. § = (v1,...,v,) be a sequence of vectors. We
will denote by ®(S) the product v; ® -+ ® v,,. Also,
for a permuation 7 of {1,...,n} we let n(S) =
(Vr(1),-++»Vr(n)). We therefore have to prove that
®(S) — ®(7(8S)) € Z for all sequences S and permu-
ations m. We first prove that the result for permuations
(i, ) which exchange a pair i < j and leave all other k in
{1,...,n} fixed. We prove this by induction on j — i.

For the base case, j = 7 + 1 we have v; ® v;41 —
v;i41 ® v; € Z and then for every z € T;_1(V),y €
Tn—ic1(V), 2@ [v; QU411 — 041 Qv;] @y € Z. There-

fore ®(S) — ®((4,¢ +1)S) € I.
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Now assume that ¢ < k and for all j withi < j < k
®(8) — ®((4,7)(S)) € Z. It suffices to prove that

Vi QUVit1 @ ... Vp—1 @ Ug—

Ve QU1 Q- - QU1 Qv; €L.

By the induction hypothesis each of the following are in
I

VOV ® - QUgp_1 ® Up—
Vit1 QU QVip2 @+ Q Vg
Vit1 QU QVi42Q - Q Vp—
Vit1 QUL QU2 ® ... V1 QU
Vip1 QU QVip2 @ QU1 ® V;—
VE Q@Uit1 V42 Q-+ QUp—1 Q v;.
The sum of these is
Vi QUVip1 @ ... V1 QUp—
Vp QU1 @ QU1 ®U;

which is therefore in Z.

We now use the fact that every permutation can be writ-
ten as a product of transpositions - permutations of type
(,4). We do induction on the number of transpositions
needed to express the permutation 7. We have already
proved the base case. Suppose we have shown if 7 that
can be expressed as a product of k transpositions then
®(S) — ®(n(S)) € T and assume that 7 = op11...01

a product of transpostions. Set v = o ...o01. Then
®(S) = ®(7(5))
[®(S) = @(y (SN + [®(4(S)) — @(or41(V(S5)))]:

[®(S) — ®(v(8))] is in Z by the inductive hypothesis and
[R(Y(S)) — ®(ok11(7(S)))] € Z by the base case. Thus,
®(8) — ®(7(S)) € 7 as required.
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2. We use the identification of Sym(V) with
Flx1,...,2y]. Under this identification Symy, (V') corre-
sponds to the subspace of homogeneous polynomial of
degree k. A basis for this consists of all z7* ...
e1,...,en are non-negative and e; + - - - + e, = k. This
is equal to the number ways that n bins can be filled with
k balls (where some bins can be empty). This is a stan-

€
i where

dard combinatorics problem. The answer is (k+2_1) =
k+n—1

( n—1 )

3. Let (v1,...,v,) be a basis of V' consisting of eigen-

vectors of 7" with T'(v;) = «;. Under the correspon-
dence of Symy (V) with the homogeneous polynomials
of Flvy,...,v,] of degree k the monomial v{* ...
where (eq, ..., e,) is a sequence of non-negative integers
with e; + - -+ + e, = k is an eigenvector with eigenvalue

€n
Un

at .. Lagn.

4. The eigenvalues are 1, 2, 8, 16 with multiplicity 1 and
4 with multiplicity 2. This operator is not cyclic.

5.a% — as.

10.5. Exterior Algebra

1. Minic the proof of Exercise 1 of Section (10.4).

2. Welet 1,n] = {l,...,n} and S,, = {m
[1,n] — [L,n]|r is bijective} and Sy = S, \ {I[1,n-

Set Wy = (v1,...,v;). Denote by S,(W,) the set
{(vﬂ.(l),...,v.,r(k)”ﬂ S Sn} and set [Bk]/ = B* \
S,(Wy). Also, for W = (wy,...,w) € B set

QW) = wy ® -+ @ wg. Finally, for W € S, (W))
and 7 € Sy, let (W, 7) = (W) — sgn(m) @ (w(W)).

A typical spanning vector inJy has the form ¢ ® --- ®
T, QYRYR21®- - -®z; where i+j42 = k. Express each
of x,.,y, zs as a linear combination of the basis 3. Then
T1® - QT;QYRYR 21 ®- - -@2; is a linear combination
of @(W), W € [B¥)" and (W, 1), W € S,,(Wp), T € Sp.

3. We continue with the notation introduced in the so-
lution of Exercise 2 with &k = n so that Wy = B =
(v1,...,vy). Our first claim is that
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Span((W,m)|W € S,(B),m € S;) =
Span((B,m)|m € Sy,).

Since (B, ) € Span((W,m)|W € S,(B),m € S}), we
need only prove the inclusion

Span((W,m)|W € S,(B),m € S}) C Span((B,m)|r € S})

, equivalently,
(W, ) € Span((B,m)|m € S}).

Suppose W = o¢(B). Then (B,0) and (B,wo) €
Span(B,m)|m € S}). Taking the difference we obtain

(B,o) — (B,70) =

[©(B) — sgn(o)(@(a(B))]—
[2(B) = sgn(ro)(@(ro(B))] =

sgn(mo)(@(m(W)) — sgn(o)(@(W)) =

sgn(o)sgn(m)(@(m(W)) — sgn(o)(@(W)) =

—sgn(o)(W, )

which establishes the claim.

Next note that Span(@(W)|W € [B"]) N
Span(@W)IW € S,(B)) = {0}. Therefore, if
®(B) € T, then, in fact, ®(B) is a linear combination of
(B,m), 7€ S;.

Suppose ®(B) € Span((B,m)|x € S}). Let 0 €
Sk. Then —(B,0) + ®(B) € Span((B,7)|m € S}).
However, —(B,0) + ®(B) is £ ® (o(B)) and conse-
quently, ®(o(B)) € Span((B,n)|m € S}). Since the
set {®(c(B))|loc € Sy} is linear independent this will
imply that Span((B,)|m € S};) has dimension n! On
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the other hand, there are only n! — 1 generating vec-
tors so dim(Span(B,w)|r € S)) < n! Thus, ®(B) ¢
Span((B,m)|m € S).

This implies that A™ (V') has dimension at least one. On
the other hand it has been established that dim(A™(V))
has dimension at most one and therefore exactly one.
Since A (V') has dimension one with basis v1 A --- A vy,
there is a unique map F : A"(V) — F such that
F(viA---Avy,) = 1. By the universal property of A (V)
this implies that there is a unique alternating n—linear
form f on V such that f(B) =

4. Let (wy,...,ws) be a sequence of vectors from V.
Then
AF(SR)(wy A -+ Awy,) =
(SR)(wy) A (SR)( k) =
S(R(w1)) A S(R(wy)) =
N (S)(R(wi) A+ A R(wy)) =
ANwy)) =

NS (A (R) (wr A -
k

(A*(S) AF (R))(wy A -+ Awy).

5. Let By = (v1,...,v,) be abasis of V. For a sequence
(wy,...,u) we let A(ug,...,ux) = ug A - A ug.
We continue with the notation of Exercises 2 and 3.
To show that .S is injective it suffices to show that the
image of a basis of AF(V) is linearly independent in
AR (W). Now {AF(®)|® € S,(v1,...,v:)} is a ba-
sis for AK(V). Since S is injective, (wy,...,w,) =
(S(v1),...,5(vy)) is linearly independent in W. Ex-
tend to a basis (wy, ..., w,,) for W. Then {AF(¥)|¥ ¢
Sm(wy, ..., w)} is a basis for A¥(W). In particular,
NP € S, (S(wy,...,w))} {INE()| T €
Sp((S(v1),...,5(vg))} is linearly independent. How-
ever,

/\k((S(’Uﬂ.(l)), R 7U7r(k)) = S(Ufr(l)) A /\S(vw(k)) =

NE(S) (Vr(1y A+ A V(i)
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Thus, {A*(S)(A*(@))|® € Sp(vi,..., vy
independent and A¥(9) is injective.

)} is linearly

6. If V is n—dimensional and S is nilpotent then S™ =
Oy_y. Since A(S)" = /\(Sn) = 0/\(V)—>/\(V)~ Thus,
A(S) is nilpotent.

v,) be a basis of V' such that S(v;) =
a;v;. Then v;, A --- A v;, is an eigenvector of A*(S9)
with eigenvalue v, ..., . Since {v;, A - - A, |l <
i1 < --- < i < n}is abasis for AF(V) it follows that
AE(S) is diagonalizable.

7. Let (’01,...,

8. det(N\F(S)) = det(S)(Zj). This can be proved by
showing it holds for elementary operators (matrices).

9. Let S : R* — R* be the operator with matrix
0 1 0 O
-1 0 0 O
0 0 3 4
0 0 -3 4

Then the eigenvalues of S are +¢,3 £ 44. On the other
hand, the eigenvalues of A%(S) are 1, 25, —4 + 37,4 +
31, —4 — 3i,4 — 3i.

10. Let (v1,v2,v3,v4) be linearly independent and set
T = v1 Ava+v3Avy. Then xAx = 2(v1 Ava AV AVY).

11. Since multiplication is distributive ¢ is additive in
each variable. Since (cw) A v = w A (cv—c(w A v), in
fact, ¢ is bilinear. In light of bilinearity, to show that ¢
is symmetric it suffices to show that it is for decompos-

able vectors, that is, vectors of the form vy A --- A vg,.
However,
(vl/\~~~/\vgn)/\(w1/\~~/\w2n) =
2
(_1)4n (w1 A Awap) A (V1 A= A vgy)

from which it follows that

¢(U1}1/\-~-

/\vgn,wl/\-~-/\w2n) =

/\wgn,vl A /\’Ugn).

We now need to show that ¢ is non-degenerate. For a
subset & = {i1 < -+ < dgn} Of [1,4n] let v, = v;, A
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-+ Ay, . Also denote by o’ the complementary subset
o' = [1,4n] \ a. Note that v, A vg = Op2n(yy if B # o
and v, A Vo = 2V A0 A Vg

Now suppose that € = ) c,v, wWhere the sum is
taken over all subsets « of [1,4n] of size 2n and that
x # 0p2n(v). Then some ¢, # 0. Then & A vy = Fc,
and @(x,v,) # 0. In particular, x is not in the radical.
Since « is arbitrary the radical of ¢ is just the zero vector.

12. We need to show that there are totally singular sub-
spaces of dimension 3. Note that the singular vectors are
precisely the decomposable vectors. Let (vy,...,vs) be
a basis for V. Then Span(vy A va,v1 A vz, v1 Avy)is a
totally singular subspace of dimension 3. A second class
of singular subspaces of dimension 3 is represented by
I'pan(vy A va, v1 A vs, V2 A v3).

13. As in the proof of Exercise 11, the form is bilinear.
Now we have
(V1 A Avg) A(wr A Awy,) =
()" (Wi A Awp) A (V1 A Aw,) =
—(wy A Awp) Ao A Awy,
Suppose now that (vy,...,vs,) is a basis of V. For a
subset v = {i3 < -+ < in} of [1,2n] set v, = v;, A

-+ Aw; . Asin Exercise 18, if 8 # o/ = [1,2n] \ « then
Vo NVg = 0/\2n(V).

Let £ = coUq + CoVo. Thenz? = x A x =

CaCa/Va N\ Vg + CqrCqUqr N\ Vo =

Cala/Va N Vor — CarCaVa N\ Vor = Op2n(yry.

It follows from the previous two paragraphs that @ A =
0,2n vy for any vector x € A™(V) and therefore ¢ is
alternating. The proof that ¢ is non-degenerate is exactly
as in Exercise 11.

14. 26 + 142* + 9623 — 128z — 32.
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15. 23 + 622 — 9.
16. 28 — 3z* — 2723 — 922 4 27.

10.6. Clifford Algebra

1. Let v be a non-zero vector in V. Set a = ¢(v) < 0.
Let ¢ = y/—a. By replacing v, if necessary, by 1v we
can assume that ¢(v) = —1. Since dim(V) = 1,V =
Span(v). Then T (V) is isomorphic to R[z]. The ideal
1y is generated by v ® v + 1 which corresponds to the
polynomial 2% + 1. Thus, 7 (V) /Z is isomorphic to C.

2. Letow = {i3 < --- < i}} and assume j ¢ «. Then
v;v;, = —v;, v; for 1 < s < k. It follows by induction
on k that v;v, = (—1)*v,v;.

3. Continue with the notation of 2 and assume i, = j.
Then v;v, = vv;, ... v;, ...

s

’Uik =

s—1
(—1) Vi .- Vi,_ VU5, ... 05 =

(—1)571’01'1 v vis_lvjvj . vik =

(—].)871’01'1 N vis_lqﬁ(vj)vsﬂ Vg, =

(—1)* " p(v;)var 5}

4. Assume first that Z is a homogeneous ideal of A =
A @ A'. ThenZ = TN A° ® I N A' from which it
immediately follows that Z is generated as an ideal by
(ZN A% U (ZnAY).

Conversely, assume X is a set of homogeneous ele-
ments of A and Z consists of all elements of the form
z=bix1c1 + - + bpxpcr + diyrer + . .. djyie; where
r, € X ﬁAO,yi eXn Al,bi,ci,di,ei € A. We need to
show the homogeneous parts of zR are in Z. Write each
b; as b;g + b;1 where b;; € At and similarly for ¢;, d; and
€;. Set

k !
2= (biomicio +bazicn) + »_(dioyien + diyieio)

i=1 i=1
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k !
z1 = Z(bi0$icil +binTicio) + Z(dioyﬁio +diryieir)

=1 i=1

Then 2y € A%,z € A' and z = 2y + z;. Now each of
b;sxicit and d; sy e+ belongs to 7 and therefore zg, 21 € 7
and Z is a homogeneous ideal.

5. Let (v1, v2) be an orthogonal basis for V. As in the so-
lution to Exercise 1 we can assume that ¢(v;1) = ¢(vs) =
—1.Seti =wy,j = vy and k = vyvs then (1,4,7,k) is a
basis for C(V). Note that i? = ¢(v1) = —1 = ¢(v2) =
j2. Since v; L 02,1 = v1V2 = —vV2v; = —ji. By
Exercise 3, ki = (ij)i = i(—ij) = —i%j = j. Simiarly,
jk =i = —kj. It follows that C(V') is isomorphic to the
division ring of quaterions.

6. Let (z,y) be a hyperbolic basis for V. Then ¢(x +
y) = ¢(x) + ¢(y) + (z,y)s = 0+ 0+ 1. Therefore
x? + y? + zy + yx = 1. Since (1, z,y, zy) is a basis
for C(V') and Span(x, y, xy, yx) contains {1, z, y, xy}

a21  Aa22
vector a11 XY+ a2+ a1y +azeyx. Let’s determine the
product of @112y + @12y + a1 + ageyx with b1 xy +
biox + ba1y + bosyx. We note the following:

also (z, y, xy, yx) is a basis. Denote by <a11 a12) the

z® =y" =z(zy) = y(yz) = (yz)r = (zy)y =0
z(yz) == = (zy)z,y(zy) =y = (yx)y
(zy)? = zy, (yx)* = yo.

Now the product of a112y + @12 + a21Y + as2yx and
biizy + biax + ba1y + baayx is

(a11b11 + a12b21 )Y+
(@11b12 + a12bag)x+
(a21b11 + a22ba1y+

(a21b12 + a22bez)yx.

It follows that the map from a1 Ty +a12x+a21y+asyx

to <a11 a12> is an isomorphism of algebras and C'(V)
az1 Qa22

is isomorphic to Mo (TF).
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Chapter 11

Linear Groups and Groups of Isometries

11.1. Linear Groups

1. The order of GL(V') is equal to the number of bases of
V. When dim (V') = n and the field is F, this is

MO8 | (TS
=1

Since SL(V') is the kernel of det : GL(V') — F; and the
determinant is surjective, [SL(V)| = [GL(V)|/|F;| =

n n

¢ T](a" — 1) x ! = - .

i=1 q—1 i=2

2. Let j = dim(Uy NUy). Let (x1,...,x;) be a bass
for Uy N Uz and (y1,...,y;) abasis for Wi N Wa. Set
t =k —j. Let (uy,...,u;) be vectors in U; such that
(z1,...,2;,U1,...,u;isabasis for Uy and (v1,...,v;)

vectors from Us such that (x1,...,2;,v1,...,v;) is

a basis for Us. Let (wi,...,w;) be vectors from
Wi such that (yi,...,y;,wi,...,w;) is a basis of
Wy and (2z1,...,2:) be vectors from W, such that
(Y1,...,Yj,21,...,2¢) is a basis for Wo.  Now
(z1,...,25,U1,..., U, V1,...,0) is a basis for Uy +
Us and (y1,...,Yj,Wi,..., W 21,...,2¢) 1S a ba-
sis for W7 + Wy, Set s = n — [k + t] and
let (p1,...,ps) be sequence of vectors such that

(T1,..., 25, uq,.. ., V¢, P1,---,Ds) is a ba-

,gs) a sequence of vector such that

<5 Ut, V1, -
sis for V' and (qq, .. .
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(Y15, Y5, wr, .. S Z4,q1,--.,4s) s also a
basis for V. Now let .S be the linear transformation such
that

<, Wi, 21, - -

S(x;) =y for1 <i<j
S(u;) = w; for1 <i < j
Sv;)=z;forl <i<jy

S(p;) =q;forl <i<s

Then S is an invertible operator, S(U;) = Wy, S(Us) =
Wa.

3. Since every one dimensional subspace is an intersec-
tion of the k-dimensional subspaces which contain it we
can conclude that every vector of V' is an eigenvector.
Then by the proof of Lemma (11.1), T € Z(GL(V)).

4. We may assume that H; # Hs. Then dim(H1NHy) =
n—2and P C HiNHs. Let P = Span(x;) and extend to
abasis (x1,...,x,_o) for H N Hs. Let x,,_1 be a vector
such that (x1,...,®,_1) is a basis for H; and let x,, be
a vector in Hy such that (x1,...,&,—2,®,) is a basis
for Hy. Note that @,,—1 ¢ Ho and x,, ¢ Hy. Let S €
X(P,Hy)and T € x(P,Hs). For1 <i<mn-—2,5(x; =
T(x;) = x; so, in particular, ST (x;) = T'S(x;) = ;.
It there suffices to prove that ST (x;) = T'S(x;) for j =
n —1,n. Now S(x,—1) = x,—1 and there is a scalar, a,
such that S(x,) = x,, + ax;. Similarly, T'(x,) = @,
and there is scalar, b, such that T'(x,,—1) = ©,—1 + bx1.
Now

TS(a:nfl) = T(wnfl) =Tp-1+ bwlv
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TS(x,) =T(x, + ax1) = T, + axy.
ST(xn—1) = S(xn_1) = xp_1 + b1,

ST (xp) = S(xy) = Ty + axy.

Since ST and T'S agree on a basis, ST = T'S.

5. Set , , = bxy,_1 — ax, and H
Span(x1,...,&p—2,x,_1). Then ST (x,,_,) = x,_;.

Since ST (x,,) = @, + ax; it follows that ST = T'S €
x(P, H).

6. Let P, = Span(x;),i = 1,2. Extend &1, x3) to a basis
(z1,...,&,—1) of H and then to a basis (x1,...,x,) of
V.Let S € x(P1,H)and T € x(P», H). Now S(x;) =
z; = T(x;) for1 < j < n — 1. Moreover, there are
scalars, a, b such that S(x,,) = ®, + ax; and T(xz,) =
x,, + baxs. Then

ST (xy) = S(xn + bx2) = Ty + axy + by, TS(xy,) =
T(x, + ax1) = x,, + bxa + axy.

Since ST and T'S agree on a basis, ST =T'S.

7. Set x| = ax; + bxy and P’ = Span(z!). Now ST =
TS is the identity when restricted to H and ST (x,,) =
@, + « and therefore ST € x(P', H).

8. Let (x1,...,x,_2) be a basis of H; N Hs and let
y; € P;,i = 1,2 be nonzero vectors. Since y; ¢ Ho,
in particular, yo ¢ Hy N Hy so that (21, ..., Zp—2,Y1) is
a linearly independent and therefore a basis of Hy. Sim-
ilarly, (@1,...,@n—2,y2) is a basis of Hy. Set W =
Span(y1, y2). Note that if S is in the subgroup of GL(V)
generated by x(Pi, Hy) and x(Ps, Hz) then S(v) = v
for every vector v € H; N Hy. Consequently, the map
S — S)w is an injective homomorphism. Set By =
(y1,y2). Denote by 7(S) the restriction of S to .

Now assume S € x(Pi,H;). Then S(y1) = w1 and
there is a scalar a such that S(y2) = ay; + y2. Therefore

1
M5y (Bw,By) = ( ¢

0 1) . T € x(P», Hy) then
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T(y2) = y- and there is a scalar b such that T(y;) =

10
(2 5)
It follows that (x(P1, Hz2), x(Ps, H2)) is isomorphic to
SLy(F) = SL(W).

Y1 + byz. Therefore M () (Bw,Bw)

9. First assume that P, + P, C H; N Hy. Assume
P, = Span(zx;),i = 1,2. Then (x,x>) is linearly in-
dependent. Extend to a basis (x1, ..., ®,_2) of H1 N Ho.
Let y; € H;,i = 1,2 such that (z1,...,T,_2,y;) is
a basis of H;. Let S; € x(P;,H;),i = 1,2. Then
Si(xj) = xjfori = 1,2and 1 < j < n — 2 More-
over, S;(y;) = y; fori = 1,2. On the other hand, there
are scalars, a1, a2 such that S1(y2) = a1x1 + y1 and
S2(y1) = y1 + asxs. To prove that S1.55 = S251 we
need only show that S; S5 agree on y; and ys.

S152(y1) = S1(y1 + axa) = y1 + azxo,

S251(y1) = S2(y1) = y1 + asxs.
S152(y2) = S1(y2) = 11 + Yo,

5251 (y2) = Se(a1x1 + y2) = ar11 + Yo.

So we must now show if P; + P is not contained in H1 N
H, then x(Py, Hy) and x(Ps, H2) do not commute. By
Exercise 8 we can assume that either P, C Hs or P, C
H,. Without loss of generality assume P; C Hs. Let
P, = Span(x), P, = Span(y). Since x € Hy N Hy
there is a basis (x = @1, ...,2,_2) for H; N Hs. Since
y ¢ Hy N H, the sequence (x1,...,T,_2,y) is basis of
Hs. Let x,,_; be a vector in H; such that (xy,...,&,—1)
is a basis for Hy. Now let S; € x(P;, H;) fori = 1,2.
Then Si(x;) = x; for 1 < j < m — 1 and there is a
scalar, a1 such that S1(y) = y + a;x;. On the other
hand, Sa(x;) = x; for1 < j <n—2,5(y) = y and
there is a scalar, ay such that So(x,—1) = ©,—1 + asxs.
We now compute S7.S2(x,—1) and SoS1(€—1).

S182(xp—1) = S1(xn_1+a2y) = Tp_1+a2y2+aiac,
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S251(Tr—1) = S2(Tp—1) = Tp_1 + a2y.

ThllS, 5152 75 SQSl.

10. Let T € x(P,H) and y = S(z),z € H. Then
(STS™)(y) = (STS)(S(x)) = ST(x) = S(x) =
y.

On the other hand, assume w € V,w ¢ S(H). Set
u =S} (w)sothatu ¢ H. Now (STS™!)(w) —w =
(STS H(S(w)) — S(u) = S(T(u) — u). Since T €
X(P,H),T(u) — u € P and therefore S(T'(u) — u) €
S(P)sothat STS™! € x(S(P), S(H)). This proves that
Sx(P,H)S~! C x(S(P),S(H)). Since this also applies
to S~1 we get the reverse inclusion and equality.

11.2. Symplectic Groups

1. Ify € =t then T, .(y) = y. On the other hand, if
y ¢ zt then (Tp. — Iv)(y) = cf (y,z)x € . Thus,
Tec € X(Span(z), x1) and, therefore, is a transvection.

2.1fy € zt then Ty T a(y) = Yy = Tiw,c+a(y). On the
other hand, assume f(y,x) = 1. Then

TocTedy) =T (y+de)=y+dr+cy=
y+(ct+td)x="Tzcra(y)

3. Ify € z* then Thyo(y) = Yy = T y2(y). On the
other hand, assume f(y,x) = 1 then

Tow,c(y) = y+cf(u,bx)(bx) =y + bex = T p2:(y).

4. If x | y then Span(x) + Span(y) C =+ Nyt. By
Exercise 9 of Section (11.1) x(z) = x(Span(z),zt)

and x(Span(y),y*) = x(y) commute.

5. This is an instance of Exercise 10 of Section (11.1).
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6. Let (x1,...,&,Y1,---,Yn) be a hyperbolic basis and

T € U(xy) act as follows:
T(iEl) =T
T(y) =y1 + Y _(axzr + bpys) + 721
k=2
T(x;) =x; —bjxifor2<j<n
T(y;) =y +ajxifor2<j<n
If S € Sp(V) set «; = S(x;) and y; = S(y;). If
T' = STS™! then
T'(zh) = =)

n

T'(y) =y, + Y _(ax), + bryp) + 72}
k=2

T'(z}) =2} —bjzi for2<j<n
T'(y;) = y; +ajzy for2 <j<n

Thus, STS~t =T" € ¥(x)).
7. This follows from Exercise 6.

8. We continue with the notation of Exercise 6. For

a2 ba

a=|:1],b= and v € F denote by T'(a, b, )
an bn

the operator with the action as in Exercise 6. Let also
C2 dg

c = ,d = cFvlandé € F. Itisa
Cn dn

straightforward calculation to see that

T(a,b,v)T(c,d,d) =
Ta+ec,b+d,d+v—-b"d+a"c) =
T(c,d,0)T(a,b,).

9. Let X = Span(x),Yy = Span(y) and Yo =

Span(z) where f(y,z) = 1 = f(z,z). Setx; = «
and y; = y and extend (x1,y1) to a hyperbolic basis
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(1,...,Tn,Y1,--.,Yn). Write z as a linear combina-
tion of this basis and note that since f(z,x) = f(y,x) =
1 the coefficient of y; is 1. Thus,

n

z=y1+ > (amk + bryr) + 721
k=2

By Lemma (11.15) if T € ¥(x) and T(y) = T(y1) = 2
then 7' is unique.

10. Let (x = @1,...,%n,¥Y1,..-,Yn) be a hyperbolic
basis of V. Set Sg = (x1,...,@,) and for 2 < j < n set
S; = (SoU{y,}) \ {x;} and set M; = Span(S;). Then

N}_oM; = Span(z1).

11. This is the same as Exercise 10 of Section (8.2).

12. By definition 0 is an identity element. Also every
element v € V is its own inverse with respect to 0. The
definition of addition for o, 8 € V' \ {0} is symmetric
in o and S and therefore is commutative. It remains to
show the addition is associative. If o, 8 € V' \ {0} then
clearly (a + ) +0 = a.+ (5 + 0). Thus, we can assume
our three elements are not zero. So let , 8,7 € [1, 6]},
There are several cases to consider: a) | U S U ~v| = 3.
Thena+p8 =7,8+7 =a,7+p = aand (a+ )+~ =
a+(B+v) =0.b)aUBUy = [1,6]. In this case we also
have a4+ =v,+7y=a,y+a = Fand (a+6)+v =
a+(B+v) =0.¢) |aUBU~| = 1. Then [ UBU~Y| =4
and (0 + 8) +7 = a+ (B +7) = [1,6] \ (aUFU).
danpny =0and |aUSU-~| = Without loss of
generality we can assume that « N 3 = 0,7 C a U S.
Then (o + B) +v =a+ (B+7) = (@UB)\ 7. e
|aoU BU~| = 5. Then we can assume that N 3 = @) and
lany]=1,8Nvy=0.Let[1,6]\ (c«UBU~v) = {i} and
any = {j}. Then (o + ) +v=a+(B+7) ={ij}

13. If f is bilinear then by its definition it is alternating
since f(v,v) = 0 for every v € V. Now f(v,w) =
f(v + O’w> = f(v,w) +0 = f('u,w) + f(O,w).
Also, for v,w € V, f(v + w,0) = f(v,0) + f(w,0)
since both sides are zero. We may therefore assume
that the three vectors are o, 3,7 € [1,6]12}. Again
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there are several cases to consider: a) @« = (. Then
fla + B,y) = f(0,4) = 0. On the other hand,
fla, )+ f(B,7) = fla,y) + fla,y) = 0. b)a = v
andaN B =0. Then (a+ B) Ny = (a+B) N = 0.
Then f(a+ B,7) = f(a+ B, «) = 0. On the other hand,
fla,y) + f(B,7) = fla,a) + f(B,a) = 0+ 0, the lat-
ter since 8 N« = (). In the remaining cases we can now
assume that o, 3, are distinct. ¢) aNB = 0,7 C a U B.
Then (o + B8) Ny =0 and f(a+ B,7) = 0. On the other
hand under these assumptions, [aNvy| = |fN~y| = 1, and
then f(a,v) = f(B,7) = 1so that f(a,7) + f(B8,7) =
0. ) aUB Uy = [1,6]. Then a« + S = ~ so that
fla+B8,7) = 0= f(a,7) = f(3,7). Consequently,
fla+B,7) = fla,y) + f(B:y)- @anB=0=an
v,|8Ny| = 1. Then |(a+8)Ny| = 1and f(a+3,7) = 1.
On the other hand f(«,v) = 0, f(58,7) = 1 and we again
get equality. We can now assume that «, 3,y are distinct
and |aN 8| = 1. f) We now treat the case that v C aU 3,
that is, v = a4+ . Then f(a,7y) = f(8,7) = 1 and
fla+ B,7) = f(v,7) = 0 and we have the required
equality. g) [N BN~v| = 1. Inthis case (o + B) Ny =0
so f(a+ 8,v) = 0 whereas f(«,v) = f(8,7) = 1. h)
anfny =0,|aUBU~y| = 4. Then we may assume that
an~y =0, intersects 8 and a+ B. Then f(a+ 8,7) =
1, f(a,v) = 0, f(B,7) = 1 and we have equality. i) Fi-
nally, we have the case where  is disjoint from v U 5. In
this case f(a + 8,7) = 0 = f(a,7y) + f(B,7) and we
are done.

14. Since m € Sg fixes 0, we have for any o € [1,6]{?}
that f(7(a),0) = 0 = f(c,0). Suppose o, 3 € [1,6]12}.
Then o N B = O if and only if 7(a) N 7w(8) = () and
therefore f(m(a),n(5)) = f(a, ). Thus, Sg acts as
isometries of the symplectic space (V, f). By Exercise
11, [Spa(2)| = 21(2* = 1)(22 — 1) = 16 x 15 x 3 =
24 x 32 x 5 = 6! = |Sg|. Therefore, Sg is isomorphic to
Sp4(2).

1,
L
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11.3. Orthogonal Groups,
Characteristic Not Two

I. Ifz € ut Nyt thenz € 2t and p.py(z) = .
On the other hand, 7, () =  + (2, y)su = x. It now
suffices to show that p, py (y) = 7o 4 (¥) = y+(y, y) su.
Seta = (y,y)y so that z = Su +y. Now (z,2)4 =
(Y. 9)o = (,2,Y)p. Now p2(y) =

(y,2)
<Z,Z>¢

<

y—2 z] =

a
y—2z:y—2(§U+y)=
Yy —au—2y = -y — (Y, y)su.

It then follows that p,py(y) = p.(—y) = y +
(U Y)ot = Tuy(y).

2. Assume w = v + cu for some scalar ¢. Let ¢ € u=t.
Then

Tu,w(m) =x+ <CL’7’UJ>¢'U/ =
z+ (z,v+cu)pu =

T+ (x,V)pU = Ty »(T).

Since T, o, and 7, ., agree on u they are identical. Con-
verely, assume Ty, = Tyw. Let T € uL. Then
(x,v)y = (@, w)y so that (x,v — w), = 0. Conse-
quently, v — w € Rad(ut) = Span(u).

3. We need to prove if v € w’ is a singular vector

then 7, is in the subgroup of 77, generated by all 7, o
where x € w' and x is non-singular. Let z € ut
such that (v, &)y, = (x,x)s. Since * [ v the sub-
space Span(v,x) is non-degenerate. Let y be a vector
in Span(v,x) such that y L = and (v,y)y = (Y, Y)e.
It is then the case that v = x + y. By Lemma (11.25)

Tuv = Tu,xTu,y-

4. Without loss of generality we can assume (u, v), = 1.
Suppose « is a singular vector and (u,xz)y = 1. By
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Lemma (11.28) there is a unique element v € T,, such
that y(v) = @. Then YT,y ™' = Ty = Tp. It fol-
lows that the subgroup generated by T, , T, contains T
for every singular vector . Consequently, the subgroup
generated by T, T, contains (V). Since T, T, are
subgroups of (V') we have equality.

5. Let H denote the subgroup of (V') generated by
x(11) U x(l2) U x(I3) U x(I4). We first point out that
xi = Span(xy,x2,y2). We claim that T, is gener-
ated by x(I1) U x(l4). Let H,, be the subgroup of T,
generated by x(I1) U x(l4). We need to prove if w € x7
then 7y, 4 C Hg,. Since w € 1 = Span(x1, x2, y2)
there are scalars a, b, ¢ such that w = axy + bxs + cyo.
By Exercise 2, Tg, w
w = bxy + cys. By Lemma (11.25), 7, pzotey, =
Ta1 bxoTar,cy, © Hg,. In exactly the same way, Ty, is
the subgroup generated by x(l1) U x(l2), Ty, is equal to
the subgroup generated by x(l2) U x(3), and T}, is gen-

erated by x(I3) U x(l4).

= T, ,bxs+cy, SO WE Can assume

Suppose now that u = cxy + x5 is a vector in /3. Set
O = Ty caxy- Then o(xe) = Ty = (T2, T1)pY2 +
(x2,Yy2)p(cx1) = @2 + cxq. It therefore follows that
aTsz*1 = T, is contained in H. In exactly the same
wayifu € loUl3 Ul then T, C H.

Now suppose w is an arbitrary singular vector. We must
show that T,, C H. By the above we can assume that
u ¢ 13 UlyUl3 Ul Let axy + o2 be a vector in Iy
such that ax; + x> L w and let by, + y; be a vector
in /3 such that bys + y; L w. It must be the case that
axy+x2 1L bys+yp sothatb = —a. Set z; = axy +x-
and zo = y; — ays. Then u € Span(zy, z3). Since
T = T, for any nonzero scalar, ¢, we can assume that
u = 21 + dz; for some scalar d. Now set v = Ty, dz,-
Thenv(z;1) = z1+dzy = w. ThenT,, = v,y C H.
It now follows that (V') C H and since H C Q(V') we
have equality.

6. Leto € Ly and u € [3. We claim that o(u) € [3. It
suffices to prove this for o € x(l2) U x(l4). Suppose
u = x. If o € x(lo) then o(u) = o(x1) = x;.
On the other hand, if 0 € x(l4), say 0 = Tz, qy, then
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U(u) = 0'(5131) = Taz,ay1 (ml) =T+ <w1,:c2>¢ay1 +
(x1,0y1)px2 = ®1 + axe € ly. Similarly, if u = x»
then o(x2) € l;. Suppose u = x; + axe. Then
o(u) = o(x1)+aoc(z2) € Iy since o(x; and o(x2) € 15.

Suppose 0 = Ty, ay,. We determine the matrix of o re-
stricted to [; with respect to the basis (21, x3). By what

we have shown this is ((1) C{) Similarly, the matrix of

. . 1
Twy by, With respect to (a1, ) is (b (1)) It follows

that the restriction of L to [y is isomorphic to S Lo (TF).
However, this map is injective and therefore L is isomor-
phic to SLo(IF). Similarly, Lo is isomorphic to S Lz (FF).

7. Since Iy N1y = Span(xy), x(l1) and x(l4) commute.
Since I3 NIy = Span(xsz), x(l1) and x(l2) commute.
Since Iz N3 = Span(y,) it follows that x(I2) and x(I3)
commute. Finally, since I3 N4y = Span(yz) we can con-
clude that x(I3) and x(l4) commute. It now follows that
Ly and Ly commute.

8. We have seen above that L; leaves /; invariant and
therefore for 0 € Ly,0(B) = B. If 0 € x(ly) acts
trivially on I; then ¢(B) = B. On the other hand, if
o € x(I3) then o(B) N B = (. It follows that B is a
block of imprimitivity.

9. The Witt index of W is zero, that is, there are no singu-
lar vectors in W. In particular, for v = ax + y, ¢(ax +
y) = a> +d # 0. Since a € F is arbitrary, there are
no roots in IF of the quadratic polynomial X2 + d which
implies that X2 + d is irreducible in F[X].

10. Let v’ = ((1) 8),1}’ = (8 _01> Then o/, v’

are singular vectors in (M, q) and (u’,v’), = 1. The

orthogonal complement of U’ in M is {(2 g) la €

1
K}. Set &’ = ((1) O) so that g(«’) = 1. Sety’ =

(Ow ag) Then ¢(y’) = —w? = d and

<:13/, y/>q =
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@' +y') —q@) —qxy') =
det (1 —gw 1 _0 w) —
det ((1) (1)) —
det (T)J Ow) =
14+w)(l-—w)—1+w?=0.

It now follows that ¢(au'+bv'+cx'+dy') = ab+c?+e%d
and the linear map that takes v — v/, v — v, x —
',y — v’ is an isometry.

11. It suffices to prove that A - m € M for A = <(1) f)

and A = (i (1)> since these matrices generate S Ly (K)

[0

1 B
IfA= (O 1) then
aB + «

am= (5" )
m= af+a aBB+aB+ap+b)’

Thus, assume m = (a j) where a,b € F and a € K.

Sinceaf +a =aB +aandaff+af+aB+becF
it follows that A - m € M. In a similar fashion if A =

1 0
hen A - M.
<,6 1)ten m €

12. If A € SLs(K) and my,mo € M then T4(mq +
mg) = Ztr(ml + mg)A = ZtrmlA + ZtngA =
TA(ml) + TA(mg).

If A e SLy(K),m € M and ¢ € F then T4(cm) =
A" (em)A = ¢(A"mA = ¢Tu(m). Thus, T4 is a lin-
ear operator on M. Since det(A) = 1 also det(ztr) =
1. Then det(A " mA) = det(A"")det(m)det(A) =
det(A). Consequently, ¢(Ta(m)) = —det(Ta(m)) =
—det(m) = q(m). Thus, T4 is an isometry of (M, q).

13. Since the characteristic of [F is not two, the center of
SLy(K) = {+£I2}. This acts trivially on M and therefore
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is in the kernel of the action. On the other hand, since
K| > 3,PSLy(K) is simple. This implies the either
Range(T) = PSLy(K) or the action is trivial, which
it is not. Thus, Range(T) is isomorphic to PSLs(K).

0 . .
Let z = ( g) It is straightforward to check
a

that the action of 7, . is the same as 74 where A =

1 «@ .
(0 Cf) Thus, Range(T) contains Ty,. By Remark
(11.5) (M, q) is generated by T, U T, which are both
contained in Range(T) and therefore, Range(T') is iso-

morphic PS Ly (K).

11.4. Unitary Groups

1. Assume 7 restricted to W is a transvection of W, say
7 € x(X, X+ NW) where X is an isotropic subspace of
W. Let 7 be defined as follows: 7(w + u) = 7(w) + u
where w € Wandu € W+. Then 7 € x(X,X*) €
QV). If T € QW) express T' as a product, 7y ... T
where 7; € x(X;, X;* N W). Prove that T = ... T €
V).

2. Let u, v be isotropic vectors such that f(u,v) = 1 and
set B = (u,v). Let Fy = {0,1,w,w + 1 = w?}. The six
anistropic vectors are © + wv, wu + wv, w?u + v, u +
w?v,wu + v, wu + wv. If T € SU(V) then the matrix
of T" with respect to B is one of the following:

(1w 1 0 0 w
2 0 1) \w? 1)7\w? 0)°
0 w 1 w
w2 1)7\w? 0/

Apart from I5 none of these leave the vector u + wv fixed
and so SU(V') is transitive on the six vectors.

3. Let w be an anistropic vector in Span(u,v)* and set
W = Span(u,v,w). Then W is non-degenerate. By
Lemma (11.37) there is an isometry 7" in (W) such that
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T(u) = wu,T(v) = wv. Let 7 be the isometry of V'
such that 7 restricted to W is T" and 7 restricted to W is
the identity. Then 7 € Q(V').

4. Suppose first that Span(u) = Span(v). Let w be
a singular vector such that f(u,w) = 1. By Exercise
3 there is a 7 € Q(V) such that 7(u) = wu,7(w) =
ww. Then either 7(u) = v or 7%(u) = v. We may
therefore assume that Span(u) # Span(v). Next as-
sume that f(u,v) # 0. Let v’ € Span(v) such that
f(u,v") = 1 and set W = Span(u,v). Then there is
a o € QW) such that o restricted to W is the iden-
tity and o(u) = w?v’. It then follows by Exercise 3
that we can find a v € Q(V) such that v(v’) = w(v’).
Then one of the isometries o, yo,y2o takes u to v. Fi-
nally assume Span(u) # Span(v) and w L v. There
exists an isotropic vector x such that w f * [ v. By
what we have shown there exists 71,72 € (V) such that
71(u) = &, 2(x) = v. Set 7 = 1a71. Then 7 € Q(V)
and 7(u) = v.

5. Let u be an isotropic vector and set U = Span(u).
If X is a non-degenerate two dimensional subspace con-
taining w then |7 (X)| = 3, one of which is U. The total
number of two dimensional subspaces containing U is 21
and the number of two dimensional subspaces containing
U and contained in u is five. Therefore there are 16 non-
degenerate two dimensional subspaces containing U and
16 x 2 = 32 one spaces Y in I (V) such that Y Y U.

Now let Y € I1(V) with Y [ U and assume 7 is a to-
tally isotropic two dimensional space containing U. Then
|I:(Z)| = b5, one of which is U. On the other hand,
YtnZ e L(UENYH). Now UL N Y+ is anon-
degenerate two dimensional subspace and contains three
one dimensional subspaces in I (V). Thus, there exists
exactly three totally isotropic subspaces of dimension two
containing U. We can now conclude that there are 3 x 4
isotropic one spaces W in U+, W # U. We therefore
have 1 + 12 + 32 = 45 one spaces in I; (V).

6. This was proved in the course of Exercise 5.

7. This was also proved in the course of Exercise 5.
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8. Proved in Exercise 5.

9. f(axy + bxs + cys + dy1, axy + brs + cys +dyr) =
ad + da + be + cb =
Tr(ad) + Tr(be).

Thus, ax1 + bxs + cys + dy; is isotropic if and only if
Tr(ad) + Tr(be) = 0.

10. If X is an anistropic one dimensional space then X -
is a non-degenerate three dimensional subspace which
contains 21 one dimensional subspaces. Moreover, if
W = X then I} (W) = 9. Therefore PN Ly(W) =
21-9=12,

11. If X, Y are orthogonal and anistropic then X + Y is
non-degenerate as is X+ NY*. A non degenerate two di-
mensional subspace contains 3 isotropic one dimensional
subspaces and two anistropic one dimensional subspaces.
Moreover, the two anistropic one dimensional subspaces
of a non degenerate two dimensional subspace are orthog-
onal.

12. |P| = 85 — 45 = 40. Suppose X € P. As we
have seen in Exercise 10 there are 12 elements Y € P
with Y L X. Then there are two Z € P with X L
7 1 Y. Therefore there are 40 x 12 x 2 x 1 four-tuples
(X,Y, Z, W) from P such that they are mutually orthog-
onal. Since there are 4! permutations of {X,Y, Z, W}
the number of subsets of cardinality four of mutually or-

fe 40X12Xx2Xx1
thogonal elements of P is =5 555°7~ = 40.

13. Assume ¢ # j and let {i,5,k,m} = {1,2,3,4}.
Then P N Ly (X;" N X;") = { X, X, }. Consequently, if
Y € P\l thenY is orthogonal to as most one of X;. Note
that |P \ [| = 36. For each ¢ there are 12 elements Z € P
such that Z 1 X;. Three of these are X;, X, X,,, and so
there are nine elements Z of P\ [ such that Z | X;. This
accounts for 9 x 4 elements of P \ I, which is all of them.
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Chapter 12

Additional Topics

12.1. Operator and Matrix

Norms
1. Let|| || beanormonF" and let x be a non-zero vector
in F”. Then I, = x and || I,z ||=|| « ||. Consequently,
for every non-zero vector, x, % = 1. Therefore, |

I |'=1.

2. || I | r= Trace(I"I,)z = nz = \/n. By Exercise
1, | ||F is not induced by any norm on F™.

3.0 A llp= (122 4+ 72 +22)2 = V193,|| A |l11=
max{14,7} = 14, A ||co,co= max{19,2} = 19.

tr
12 2 12 2
(70 (70)
12 7\ (12 2\
2 0/\7 0"
193 24
24 4 )
The characteristic polynomial of A" A is X2 — 197X +

196 = (X —1)(X —196). The eigenvalues are 1 and 196.
Thus, p(A""A) =196 and || A [2.2= V196 = 14.

1 7 7
4ATA=A2= |7 11 7 |. Trace(A"A) = 33.
77 11

Therefore || A ||p= /33.
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A la=1l A oo ,00= 5

The eigenvalues of A" A are 4 with multiplicity two
and 25 with multiplicity 1. Then p(A4*" A) = 25 and

|| All2,2=v25=05.

5. By Lemma (12.1) there is a positive real number M
such that | T(x) ||[w< M || « ||v. Suppose now that
xg € V,T(xg) = yo and € is a positive real number.
We have to show that there exists 6 > 0 such that if ||
x—xo |[v< dthen | T(x) — T(xp) |[w< €. Lety =
maz{M,1} and set § = <. Now suppose || & — @ ||y <
§ then || T(x) — T(wo) lw=| T(x — o) < M |
T —x ||lv< eM < M.

6. Since I2 = I,, we have || I, |=|| I, - I, || <

L ] 1 Ll

from which we conclude that || I,, ||> 1.

12.2. Moore-Penrose Inverse

1. Since pup(x) = 2% — x it follows that P2 = P, whence
P3 = P. Thus, if X = P then (PI1) and (PI2) hold. Since
P is Hermitian, P* = P and therefore (PZ)* =P It
follows if X = P then (PI3) and (PI4) hold so PT = P.

2. If X = diag{i,...,d%,O,...,O} then DXD = D
and XDX = X so (PIl) and (PI2) hold. Since AX =
XA = diag{l,...,1,0,...,0} (rank ), (AX)* =
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AX,(XA)* = XA so also (PI3) and (PI4) hold. Thus,

X = diag{dil, ce d%, 0...,0} is the Moore-Penrose in- BXB = (A*A)[AT(AT)*](A*A) =

verse of D. (A*A)[AT{(AT)*A*}A:

3. Set X = i.(ay,...,a,). Then Xv = 1 and

oIl

vXv = v, XvX = X so (PIl) and (PI2) hold. Since
Xw is areal scalar, (Xv)* = Xv and (PI4) holds. On the
other hand, vX is the n x n matrix whose (4, j)-entry is
”v”azaj which is a Hermitian matrix: (vX)* = vX so
(PI3) holds.

4. AA7'A = Aso (PI1) holds. A='4AA~! = A~ ' s0

(PI2) holds. Since AA™! = A= = [,, = I, (PI3) and
(PI4) hold. Thus, AT = A~1.
5. Set X = C*(CC*)"Y. Then CX = I, so

that XCX = X and CXC = C so that (PIl) and
(PI2) hold. Since CX = I, clearly (PI4) holds. On
the other hand, XC = C*(CC*)~'C and (XC)* =
c([co*)~hH*(C*)r = cr(CcC*)To = XC.

6. P2 = (AA")2 = AATAAT. By (PI1), AATA = A and
therefore (AA")2 = AAT = P. By (PI3), P* = P so

that (P?)* = P2,

7. (I — P)? = (I, — P)I,— (I, — P)P = (I, — P) +
(P%2— P) =1, — P. Also, (Iy; — P)* = I}, « —P* =
I, — P.

8. Set X = (A")*. We want to show that X = (A4*)T.
A*XA* = A*(AN)*A* = (AATA)* = A* so (PII)
holds.

XA*X = (AT)A*(AT)* = (ATAAD)* = (D) = X.

Thus, (PI2) holds.

(A*X)* = [A*(AT)*]* = AT A. However, we then have
A*X = [(AA*)*]* = (ATA) = ATA by (PI4) for A.

Thus, (PI3) holds for X relative to A*.

(XA%)* = AX* = A[(AN)*]* = AAT. Since AAT
is Hermitian it follows that X A* is Hermitian and (PI4)
holds.

9. Set B = A*Aand X = AT(A*)Jr = AT(AT)* b
Exercise 7. We show that X is the Moore-Penrose inverse
of B.
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(A*A)[AT(AAT)* YA = (A*A)[AT(AAT|A =
(A*AAT)(AATA) = (A*)(AATA)
Thus, (PI1) holds.

=A"A=B.

XBX = [AT(A)*](A* A)[AT(AT)*] =
AT(AAT)*AAT(A*)T =
ATAAT (AT = AT (A" = X

Consequently, (PI12) holds.

(BX)* = [(A*A)(AT{AT}]*
[A*(AAD{AT}]" =
({AT})"(AAT)* (A7) =
ATAATA = AT A.

Since At A is Hermitian it follows that (BX)* is Hermi-
tian, whence, BX is Hermitian and (PI3) holds.

= {[AT(AT)"|[a A} =
{AT[(AT)* A" A} =
{AT([aAT)" A} =
[AT(AAT)A]* = ATA

(XB)*

which is Hermitian and (PI4) holds.

10. Since A = AATA = A(ATA) by (PI4) we have
A" — [A(ATA)]* = (ATA)*A* = (ATA)A*. On the
other hand, writing A = (AAT)A and using (PI3) we get
A* = [(AAN)A]* = A*(AAT)* = A*(ATA).

11. (A*A)TA* = [AT(A*)T]A* by Exercise 8. By Exer-
cise 7 we have

A (47)1)4% = [} (A1)7) 4" =

02/06/15 3:12 pm



12.2. Moore-Penrose Inverse

119

AT(AATA)* = AT(AA') by (PI3). By (PI2)
this is equal to AT as desired.

12. ATA = (A*A)T(A*A) by Exercise 11. Now A*A
is Hermitian and therefore so is (A*A)" by Exercise 8.
Moreover, AT A is Hermitian by (PI4). It follows that
ATA = (ATA)" = {[(A"A)T)(A" )} =
(A" A (A" A1) = (A" A) (A" 4).

Since A*A = AA* we have

(A*A)(A*A)T. = (AA*)(AA")T =
A[A*(AANT] = AAT
by Exercise 11.

13. The proof is by induction on n. The base case is triv-
ial. Assume that (A")" = (AT)”. We must show that
(AT = (AT)"+L We show that for X = (AT)"+!
that (PI1) = (PI4) hold. We make use of Exercise 12:
AT A = AAT. As a consequence we have

AT AT L AL — (A ATA) (A7 (AT)"A).

By the inductive hypothesis, A" (AT)? A" = A™. Further-
more, AAt A = A. Therefore

(AATA)(A™M(AT)PA™) = AA™ = AnFL,
Thus, (PI1) holds.

(AT 1AM (AT = (AT AAT)(AT)" A" (AT)"] =
AT(AT)n — (AT)"‘H.
Thus, (PI2) holds.

(AT AH = (ATA)[(AT)" A7) =
(ATA)(ATA)™ = (ATA)"HL,
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Since At A is Hermitian it follows that (AT A)"** is Her-
mitian. This proves (PI3). In a similar fashion we have

An+1(AT)n+1 _ [AAW”+1.
Since AAT is Hermitian so is (AAT)"*1 and (PI4) holds.

14. With B = AA and X = ;AT we show (PI1) - (PI4)
hold.

BXB= (AA)(%AT)()\A) =

MAATA) = XA = B.

XBX = (%AU(AA)(%AT) _

1 1
—(ATAAT) = AT = X.
M =3

BX = (AA)(%AT) = AAT = (AAT)*.

XB = (%AT)AA) = ATA=(ATA)".

15. Assume A* = Af. Then (A*A)? = (ATA)? =
ATA = A*A by Exercise 6. Converely, assume that
(A*A)? = A*A. Then it is straightforward to see that
(A*A)T = A*A. From Exercise 11 it follows that
At = A* AA*. 1t then follows that A = A(A*AA*)A =
A(A*A)2 = AA*A. Thus, (PI1) holds with X = A*.
Since A = AA* A taking adjoints we get A* = AA*A so
(PI2) holds as well. Since both AA* and A* A are Her-
mitian (PI3) and (PI4) are satisfied. Therefore, in fact,
At = A"
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12.3. Nonnegative Matrices

1. Assume a
Ak+m

. # 0 and al 74 0. The (4,1)-entry of
AkAm isy " > 0.

7),(4:1) €

>aa

p=1 1p pl il

2. Assume j € A(i) and l € A(j). Then (i,
A. By Exercise 1, (¢,1) € A sothat! € A(q).

3. Let! € I. Suppose a,,; # 0 so that m € A(l). Then
by Exercise 2, m € A(i) = I. Consequently, Ae; €
Span(e;|j € I) as was to be shown.

ail QA1n
4. Let A = and B =
anl Ann
b1 bin
: and assume that {(7,j)|a;; # 0} =
bn1 bin

{(i,j)|bij # O}. Then af  # 01if and only if b  # 0. The
result follows from this.

5. (I, + A"t = Z;’;Ol (";1)I%A"_1_j. Assume i #
j. Since (I, + A)"~! > 0 for some j,1 < j <n—1
the (i, j)-entry of A7 is positive. Fix i,1 < i < n and
let 1 <1 < n,l # i. Then for some j,ajl > 0 and for
some k, aﬂ > 0. It then follows that aJHC > 0. Thus, A
is irreducible.

6. Let the entries of A be a;;. It suffices to prove if A is a
positive m X n matrix, & is a non-zero nonnegative matrix
T

then Az # 0. Let x = and assume that z; > 0.

Ln

The i'" entry of Az is ") _, azy > az;z; > 0.

7. If p(A) = 0 then all the eigenvalues of A are zero and
A is a nilpotent matrix, whence A™ = 0,,. However,
if A¥ > 0 then (A*)" > 0 which contradicts (A*)" =
(AMF = 0,,.

8. Assume x > 0 is an eigenvector for A, say Ax =
Ax. Since A is non-negative and * > 0, Az > 0. In
particular, A > 0. Thus, p(A4) > 0.
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9. Assume Ad = Ad. Let a;; be the (7, j)-entry of A.
Since d is an eigenvector with eigenvalue p(A) we have
for each 1,

> aiid; = p(A
j=1

Now the (i, j)-entry of D™YAD is %aij' Then

n n

It follows that the matrix %D‘lAD is a row stochas-

tic matrix. By Theorem (12.22) it follows that

p(+D7*AD) = 1. However, p(;D 'AD) =
D~ 'AD A

P()\i)) = Q Thus, A= p(A)

10. By Theorem (12.19) there are positive vectors x,y
such that | 1= 1 = y'"z, Az = pz, A"y = py.
By Theorem (12.21), limk_mo[%A]k = zy'", arank one
positive matrix. It then follows for some natural number
k that A% > 0.

11. Assume w € C, |w| = 1 and wz; = |2;]| for all 4. Then
lwz1 + -+ wzn| = |21+ -+ zal] = 21| + - - 2]

We prove the converse by induction on n. Assume n = 2.
Let w € C,|w| = 1, such that wz; = a € RT. We
need to prove that wzy = |23], equivalently, wze € RY.
Assume wzy = b+ ci where b, ¢ € R. Then |z; + 22|? =
|(a +b) + ci|?> = (a +b)? + % = a® + 2ab + b* + 2.
On the other hand, (|z1] + |22])? = [a + Vb2 + 2]? =
a? + b+ c2+2avVb2+c2 If ¢ # 0orb < 0 then
2ab # 2ay/b? + 2. Therefore ¢ = 0 and b > 0.

Now assume that n > 2 and the result is true for n — 1
complex numbers 21, ..., z,—1. Assume w € C, |w| =1
so thatwz; € RY. Replacing z; with wz;, if necessary, we
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may assume that z; € R* and we need to prove that z; €
R for every i. Suppose |20+ - -+2,| < 22|+ +]|zn]-
Then |21+ -+ 2| < |21] 4|22+ -+ 2] < |z1|+---+
|z, a contradiction. Therefore |21 + (22 + -+ + 2,,)| =
|z1] 4+ |22 + -+ 4 20| = |21]| + - . - |2n]- It follows by the
case for n = 2 that 2o + - - - + z,, € R*. By the induction
hypothesis, there is v € C, |y| = 1 such that vz; = |z;]
for2 <+i <mn.Then~vy(za+: - +2,) =yzo+- -+7y2, €
R* which implies that v = 1.

12. Assume first that A > 0 and that Ax = Az and
[A\| = p(A). Then there is a w € C,|w| = 1 such that
wx = |x| > 0. Since Az = Az we have |Az| = [ x| =
[Allz| = p(A)|x|. It then follows that A|z| = p(A)x to
that || is a positive vector. Now assume A is nonnegative
and primitive, A € Spec(A), A # p(A) and that Ax =
A\z. By Exercise 10 there is a k such that A¥ > 0. Then
A*z = \ex and so \F € Spec(A¥). Moreover, p(A*) =
p(A)%. By the case just proved, either \¥ = p(A)* of
IAI¥ < |p(A)|* so that || < |p(A)|. However, in the first
case the geometric multiplicity of p(A)* is greater than
one which contradicts Theorem (12.19).

b1

13. Letp = . Then (p,jn) = > 7_, pn. Thus,

Pn
if p > 0 then p is a probability vector if and only if
(p,gn) = 1.
P1j

14. Assume p; = . Since (s1,...,5¢) is a se-

nj
quence of nonnegative numbers, s;p;; > 0 for every ¢
and j. Then Z§:1 pijS; > 0sothat syp1 + - - - + sypy is
a nonnegative vector. Now

n t t n
E E SiDij = E E SiDij =
i=1 j=1 j=11i=1

n

ZSJ‘ Zpij = ZSj =1.
j=1 i=1 j=1

15. By Lemma (12.7) (proved in Exercise 16) every col-
umn of s;A; + -+ + sgA; is a probability vector and
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therefore s;A; + --- + s;A; is column stochastic. If
the matrices are bi-stochastic then the argument applies
to A" ... Al

16. If the columns of A are ¢y,...,¢c, and p =

Sp
then Ap = syc1 + - - - + sp¢,. Now the result follows by
Lemma (12.7), Exercise 16.

17. If follows from Exercise 18 and the definition of ma-
trix multiplication that the product of two column stochas-
tic matrices is stochastic. If A is stochastic then by induc-
tion it follows that A is stochastic.

18. We first prove if p,q are probability vectors and
(p,q) = 1then p = g = e; for some i. Assume to
the contrary that p # e; for all 4. Then there exists j such
that 0 < p; < 1. Then p;q; < g; from which we con-
clude that -7, pjq; < >-;_; ¢; = 1, a contradiction.
Let the columns of A" be ag,...,a, and the columns
of A= be by,...,b,. Since AA~! = I,, it follows that
(a;,b;) = 1sothat{a4,...,a,} ={ei,...,e,} and A
is a permutation matrix.

19. Assume A has more than n entries and therefore some
row has at least two entries. Without loss of generality we
can assume the first row has two entries, which we point
out are both less than one. Assume they are in columns ¢
and j. Since ay; < 1 there must be an s such that az; # 0.
Since a;; < 1 there must be a ¢ such that a;; # 0. Now
there are two columns with at least 2 non-zero entries.
Since each column sums to 1 there must be at least one
nonzero entry in each column and we have shown this
matrix must have at least n + 2 nonzero entries.

a

20. Let A = < b). Since the matrix is bistochastic,
c

d
a+ b = a+ csothat b = ¢ and the matrix is symmetric.
Alsob+d=1=a+bsoa=d.

21. Since A is reducible it is permutation similar to a

A; By .
0; A;) where A; is an

s X s matrix and A is a ¢t X ¢ matrix with s +¢ = n.

block matrix of the form <

02/06/15 3:12 pm



122

Chapter 12. Additional Topics

The matrix A; is column stochastic and the matrix As is
row stochastic. Now the sum of each column of A; is n
and there are s columns so the sum of all the entries in A,
is ns. Since A is row stochastic, each row of A sums to
n. Let the rows of A; be ays,...,a1s. The sum of the
entries in each aq; is at most n. Suppose some row does
not sum to n. Then the sum of all the entries in all the
rows of A; sums to less than ns, a contradiction. Thus,
each row of A; sums to n and A, is a bistochastic matrix.
Consequently, Bs; = 04 and then As is bistochastic.

12.4. Location of Eigenvalues

1. Since A is a stochastic matrix, in particular, A is real
matrix. Since A is stochastic, A" is row stochastic. If
d = min{a;;|1 <i < n}then C/(A) = R;(A") <1-4
for all i. Suppose z € C and |z — d] < CJ(A) < 1—4.
On the other hand, |z — a;| < |z — 4.

2. This implies that A is strictly diagonally dominant,
consequently, A is invertible.

3. Since I'; (A) N T'j(A) = 0 for all ¢ # j it follows from
Theorem (12.26) the eigenvalues of A are distinct and it
follows that A is diagonalizable.

4. By Theorem (12.26) each I';(A) contains an eigen-
value, whence, no I';(A) contains two.
a € R and w, w are complex conjugates. Then |a — w| =
|a — w|. If A has a complex eigenvalue, w, then also W is
an eigenvalue since the characteristic polynomial is real.
Suppose w € T';(A) so that |w — a;;| < R;(A). But then
|w—a;| < R(A)andw € I';(A), a contradiction. Thus,
the eigenvalues of A are all real.

Now assume

5. Since each of the matrices Q' AQ is similar to A we
have Spec(Q1AQ) = Spec(A). Therefore Spec(A) =
Spec(Q™1AQ) C T'(Q 'AQ) and, consequently, con-
tained in the intersection of all [(Q~1AQ).

6. This is proved just like Exercise 4.

7. Denote the columns of Aby ¢y, ..., ¢,. LetI = {i; <
- < ir}. We prove that the sequence (c;,,...,C;,)
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is linearly independent. Let A;; be the £ x k matrix
whose (s, t)-entry is a;,;,. Then Ay is strictly diag-
onally dominant and therefore by Theorem (12.32) in-
vertible. This implies that the sequence of columns of
Ay is linear independent which, in turn implies that the
sequence (¢, ,...,¢;,) is linearly independent. Thus,
rank(A) > k.

8. Assume to the contrary that for all ¢, |a;;| < C/(A), we
will obtain a contradiction. Since A is strictly diagonally
dominant it follows that Y., |a;| > Y.i | Ri(A) =
gy lagl = Y0, CHA) = 7, Jaal. a contradic-
tion.

9. Since multiplying the i** row by -1 changes both the
sign of det(A) and a;; we can assume that all a;; > 0
and prove that det(A) > 0. The proof is by induction
onn > 2 If A= (all @12

a1 a2
agy > |a21| then det(A) = a110a22 — A21012 = G11022 —

> with a1; > |a12| and

\a12||a21\ > 0.

Now assume the result is true for all strictly diagonally
dominant (n — 1) X (n — 1) real matrices with positive
diagonal entries and assume that A is an n x n strictly di-
agonally dominant real matrix with positive diagonal en-
tries. Let a;; be the (i, j)-entry of A. We add multiples
of the first column to the other columns in order to obtain
zeros in the first row. This does not change the determi-
nant. After performing these operations the entry in the
(i, 7)-entry with 1 < 4,7 is by; = a;; — “2". We claim
that the (n — 1) x (n — 1) B matrix with (k, [)-entry equal
t0 by41,141 is strictly diagonally dominant with positive
diagonal entries. Now the diagonal entries are

Qg —
a11

A5 — |6Li1| >0

which establishes our second claim. We now must show

that
a1i041

iy — ——— > Z |CL1‘j—

a11 . oy
J22,5#1

ai1a1j|
a11

We illustrate with ¢ = 2, the other cases follow in exactly
the same way. We thus have to show that
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ase Z|a2j
a210a1;
Zlazgl +Z\ —ar

Jj=3 Jj=3

a21€11g ‘ <

It therefore suffices to show that

a12a21

as1a
a22>2|023|+2\ 2 1]|

Since A is strictly diagonally dominant it suffices to prove
n ax1aij
that > 07, [Z—H| < [aa1|. Now

n
Z |a21a1j ‘ _
=
1 n
lasi| x — )" |a;| < |asi]
ail “—
j=2

since a1y > D77, |aql-

Now det(A) = ay1det(B). Since B is strictly diagonally
dominant with positive diagonal entries, det(B) > 0 by
the inductive hypothesis. Hence det(A) > 0.

12.5. Functions of Matrices

1i. For any n x n matrices A, B, (Q~1AQ)(Q"'BQ) =
Q'[AB]Q. Then result follows by a straightforward in-
duction on k.

i. [Q7Y(M; + M2)]Q = [Q7'M; + Q7 'M)Q =
[Q'M]Q + [Q'M2]Q = Q' MiQ + Q™ M2Q.

2. Assume f(x) = ap + a1z + -+ + a;pz™. Now
F(B) = aply+aiB+---+amB™. Then Q1 f(B)Q =
Q tlaol, + a1 B + -+ + a,, B™]Q. By repeated appli-
cation of Lemma (12.9) ii. it follows that Q! f(B)Q =
QM (a0L)Q + Q (@ B)Q + -+ Q  (amB™Q =
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aol, +a1Q 'BQ+---+a,,Q ' B™Q. By (12.9) i, this
is equal to agl,, + a1Q 'BQ + - + a,,(Q 1 BQ)™
f(Q'BQ).

3. There exists an invertible matrix @ such that Q~*AQ
is upper triangular. Since exp(Q~1AQ) = Qtexp(A)Q
we can, without loss of generality, assume that A is upper

)\1 aig ... QA1n
0 A2 aop
triangular. Now if A = | . . then
0 0 R v
exp(A) is upper triangular with e*1 ... e’ on the diag-
onal. Consequently,
Xexp(A) = (x - eAl) te (J) - ea:p()\n).

4. It follows from Theorem (12.36) and the defini-

tion of determinant that det(exp(A)) = M ...eM =
e)\1+~~~+)\n —_ eTrace(A)'
5. For an n x n complex matrix we have (A™)* = (A*)".

We also have (A+ B)* = A* + B*. Also for a real scalar
¢, (cA)* = cA*. It then follows that if f(x) € R[z] and
Ais an n x n complex matrix then f(A)* = f(A*).

Set f(x) = 37— 727 Then f,,(A)* = fn(A*). Itthen
follows that

erp(A%) = lim f,(A%) = lim f,(4)* = exp(A)"

n—

6. By Exercise 5, exp(A)* = exp(A*) = exp(A).

7. In general, if AB = BA then exp(A)exp(B) =

exp(A + B) = exp(B + A) = exp(B)exp(A).
In particular, exp(A )e (A ) = exp(A)exp(A*) =
exp(A + A7) = exp(A” + A) = exp(A®)eap(4) =

exp(A)*exp(A).
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Chapter 13

Applications of Linear Algebra

13.1. Least Squares

. . . 1 1 =2 L 1 1 1 =2 )
1. By Lemma (13.1), if X is a {1, 3} inverse of A then ( > 1 =3|z= < > 3
AX = AA'. Conversely, suppose AX = AA. Then L =3 2 -2 2 L =3 2 —6
AXA = AA'A = A by (PI1) for the Moore-Penrose
inverse. Also, (AX)* = (AAT)* = AAT = AX. < 6 —6) (24)
-6 14 6/’

2. Since z = Xb where X is a {1,3} inverse of A we
have Az = AXb = AA'b which is a least squares solu- %
tion to Ax = b. Therefore, if Ay = Az then y is a least r= < ) '
square solution to Ax = b.

5. Clearly the columns of A are not multiples of
each other and consequently, the sequence is linearly
independent. The reduced echelon form of the matrix

3. Since A = BC, A* = C* B*. Substituting this for A*
in the normal equation A* Az = A*b we get

1 2 1
C*B*Ax = C"B"b. 1 1 —2]isI3s0b¢ col(A).

It then follows that C*(B*Ax — B*b) = 0,,. However, Ls 7
since C* is an n X 7 matrix with rank r it must be the case rn 1 1 . .
that B*Ax — B*b — 0, which implies that B* Ax — 5 1 3 so the matrix version of the normal
B*b. equations is
4. Clearly the columns of A are not multiple of each
other and consequently, the sequence is linearly in- 11 1 1 2 11 1 1
dependent. The reduced echelon form of the matrix 1 1|xz= 2

1 1 9 2 1 3 3 1 2 1 3 .

1 —3 3 | is I3 and therefore b ¢ col(A).

-2 2 -6 36x_6
6 14)7  \21)’

1 1 =2
A* = ( 1 3 9 ) . The matrix version of the normal (_7)
. . T=1| 4 |-
equations 18 5
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6. Clearly the columns of A are not multiple of each other
and consequently, the sequence is linearly independent.

112 11 1 1 bl
11 1 11 1 _
The reduced echelon form of the matrix 1 1 3 111 -1 11 —11*7
11 -1 1
1 -1 18 1 -1 1
1 00
. 1 1
is 0 0 so b ¢ col(A). 11 1
0 0 1 2
0 0 0 11 1 -1 1
11 -1 1
4
A* = L . The matrix version of the nor-
1 1 1 -1 4 2 2 6
mal equations is 2 4 0lxe=|-2
2 0 4 8
1 1
11 1 1 1 1 3
xr = 2
11 1 -1 1 1 T = _%
1 -1 5
4
2 8. The reduced echelon form of the matrix
(1 111 ) 1 10 1 1 10 2 0
L1 1 =1/13 01 -1 -1} . [0 1 =10
is It fol-
18 1 2 0 -1 00 0 1
21 3 0 00 0 O
<4 2> o < 24) lows that the sequence of columns of A is linearly
2 4 -12)” dependent and that b ¢ col(A).
20 The matrix version the normal equations is
().
6 4 8 -1
4 6 2|lxz=1|-3
1 00 8 2 14 3
.10 1 0
7. The reduced echelon form of A is 00 1 so the
00 0 10
sequence of columns of A s linearly independent. There- ¢ p _ 01 = 1 0 2 Then A — BC
1 1 1 1 1 2|’ 01 —-1)°
duced echelon form of the matrix ! 1 2 21
1 1 -1 -1 is full rank decomposition of A. Then AT = CTB1.
1 -1 1 4

is 1. Therefore b ¢ col(A). The matrix version of the
normal equations is

-
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1 1 4 1 1 1 _ 1
3 3 5 15 B9 15
=11 5 1 4 1 1 1
:f‘ 31 AT = 415 415 15 g 15
ER 5 g5 0 5 0
i1 2 5 _z2
L L L L 15 5 15 15
3 30 5 5 1 1 1
At |- 1u 3 11| 3 — 3 3
FER ) 0 1 1 g
% 60 10 % AtA=1, 1 % |
A A
- 3 —3 0 3
Set z = ATb = | —il |. The general least square solu- 3
i 3
20 9 Set z = ATb = i . Then the general least square
tion is z + y where y € col(I3 — ATA) = Span | —1 1
-1 solution is z 4+ where v is the column space of I, — AT A
9. The reduced echelon form of (A4 b) is 1 1
L 1 -1
101 1 0 which is equal to Span 5 |
011 -1 0 0 2
000 0 1 11 12
3 3 3 9
000 00 10. 2 8] = % % ( ) This leads to
000 0 0 S s s, 3 )\ 3
3 3
Thus, b ¢ col(A) and the sequence of columns of A is 3 9 102 2 2
linearly dependent. the equation (0 3) T = (_32 3 13) 7
3 3 3 _5

The matrix version of the normal equations is ) o )
After performing the multiplication on the right we get

4 -1 3 5 6
“1 43 5| [ (3 9):(2)7
3 3 6 0 9 03 5
-5 0 10 3 _1
ac:( 53).
10 3
1 1 1
o1 101 1 3 3 3
Let B = 1 -11,C = . Then % % _%
L 01 1 -1 HLeQ=|2 2 2.
2 2 2
-1 1 1.1 1
2 2 2
A = BC is a full rank decomposition of A. Then AT = 2 -1 1
CTBT. Then A= QRwhere R= [0 5 4|.ThenR!=
1o 0 0 1
0 1 4 1 1 1 _1 11 9
B O R G R e R A O
if 31 15 15 5 3 5 5 5
i -1 0 0 1
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The solutionis ' = R~}(Q"b= | 1

12. y = 2.06 + 3.01x.

13. y = 3.51 — 356z.

14. y = 2.92 — 1.88z + 1.20x2.
15. y = .26 + .87z + .3522.

16. y = .35e!2%,

17. y = 2.53¢ =14,

13.2. Error Correcting Codes

1. For an arbitrary word z = (¢1 ... ¢,) let spt(z) =
{ile; # 0) so that wt(z) = |spt(z)|. For words  and
y we have spt(x + y) C spt(z) U spt(y) and the result
follows from this.

2. d(@,2) = wi(@ - 2) = wi(lz — y] + [y - 2]) <
wt(x —y) + wt(y — z) by Theorem (13. 8) (Exercise 1).
By the definition of distance

wt(x — y) +wi(y — z) = d(z,y) + d(y=).

3. Parti. Assume d(w,x) = t where w = (ay ... ap).
Then @ and w differ in exactly ¢ places. There are ()
ways to pick those places. If 4 is such a place then the i*"
component of x is not a; and we have ¢ — 1 choices for

the i*" component of . Thus, the number of such z is
(g —1)"

ii. The closed ball, B,(w) is the disjoint union of
{w,{z|d(w,xz) = 1},...,{x|d(w,z) = r}. The result
now follows by part i.

4. For a vector v set ¢(v) = v - v. This is a quadratic
form. A self-dual code is a totally singular subspace. If ¢
is odd then (IF}/, ¢) is non degenerate and the Witt index
is at most | 5. If ¢ is even and n is even then (IFy, ¢) is
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a non degenerate hyperbolic orthogonal space and so has
Witt index 5. On the other hand, if ¢ is even and 7 is odd
then the orthogonal space (IFy, ¢) is nonsingular: it has
a radical of dimension one (the space spanned by the all
one vector) which is a non-singular vector. In this case

the Witt index is 5.

5. a) Let z denote the all one vector. Then z € H. The
map £ — z+x is a bijection from the collection of words
of length ¢ to words of length 7 — ¢.

b) Since the minimum weight is 3 there are no words of
weight 1 or 2 and by part a) no words of weight 5 or 6.
So the weight of a word in H is in {0, 3,4, 7}. There is a
single word of weight 0 and weight 7. There are equally
many words of weight 3 and 4 and their total is 14 so there
are 7 of each.

6. The parity check extends 07 to Og and extends the all
one vector of length 7 to the all one vector of length 8.
Each of the 7 words of weight 4 are extended by adding
a component equal to zero so each of these gives rise to a
word of weight 4. On the other hand each of the 7 words
of weight 3 are extended by adding a component equal to
one so each of these also gives rise to a word of weight 4.
Therefore, in all, there are 14 words of weight four in H.

7. - x = wi(x) x 1p, is equal to one of w(x) is odd
and zero if wt(x) is even.

8. x -y = |spt(x) N spt(y)| x 1g,. Therefore ¢ - y = 0
if spt(x) N spt(y)| has an even number of elements and
is one if |spt(x) N spt(y) is odd.

— —

9. Since wt(x) is even for every word in H it follows
by Exercise 6 that - & = 0 for every « € H. Clearly if
x = 0 and y is arbitrary then -y = 0. On the other hand,
since £ N z = z it follows from Exercise 7 that z - = 0.
We may therefore assume that wt(x) = wt(y) = 4 and
prove that - y = 0. By Exercise 7 we need to prove that
|spt(x) N spt(y)| is even. Suppose |spt(x) N spt(y)| =
1. Then wt(x + y) = 6 which contradicts Exercise 5.
Likewise, if |spt(x) N sit(y)| = 3 then wt(x + y) = 2,
again a contradiction.
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10. Let x,w be code words. Suppose y € Bz(w) N
Bs(x). Then d(w, x) < d(w,y) +d(y,z) <3+3 =6,
a contradiction. Therefore Bs(w) N Bs(x) = (). By part
ii. of Theorem (13.11), | B3(w)| = 1+23+ (%) + (¥) =
1423425341771 = 2048 = 2'!. Since C has dimension
12, the number of words in C is 2'2. Since the balls of
radius 3 centered at the code words are disjoint it follows

that

| Uwee Bs(w)| = [C] x |Bs(w)| =

212 X 211 _ 223 — ‘]ng‘
Thus, { B3(w)|w € C} is a partition of F33.

11. The number of nonzero vectors in F" is ¢ — 1. Since
Span(x) contains ¢ — 1 nonzero vectors the number of
one dimensional subspaces of [y is qqn__ll = t. Thus,
there are ¢ columns in the parity check matrix H (n, ¢) so

the length of the Hamming (n, ¢)-code is ¢.

We next claim that rank(H(n,q)) = n. Since there
are n rows it follows that rank(H(n,q)) < n. On
the other hand if X,...,X,, are one dimensional sub-
spaces, X1 + -+ X,, = F} and X; = Span(z;) for
1 <i<nthen (xy,...,x,) is a basis of [y Therefore,
rank(H (n,q)) > n. Since the Hamming code is the null
space of H(n, ¢) we can conclude it has dimension ¢ — n.

We now prove the assertion about the minimum distance.
Since any two columns are linearly independent the min-
imum distance is at least 3. However if X, Y, Z are three
distinct one dimensional subspaces such that X + Y =
X+W =Y +Wand X = Span(x),Y = Span(y),
and W = Span(w) then (z, y, w) is linearly dependent.
Consequently, there are words of weight three. Thus, the
minimum weight is exactly three.

It now follows that the balls By (w) where w is in the
Hamming code are disjoint since the minimum distance
is 3. By Theorem (13.11) the number of vector in such a
ballis1 +t(¢g —1) = 14—"qnf*11 x (g — 1) = ¢™. Since
there are ¢! =™ code words we get

|Uw€Ham(n,q) Bl(w)l = \Ham(n7Q)| X |Bl(w)| =
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qt—n X qn — qt.

Thus, { B1(w)|w € Ham(n,q)} is a partition of F} and
Ham(n, q) is a perfect 1-error correcting code.

13.3. Ranking Web Pages

. . A 05><4)
1. The matrix is where A =
<04><5 B
0 £ 0 % 1 .
£ 0000 (1) 0 2 8
0 3 0 0 0|andB= . 2
1 0 3 00
3 0100 0 1 1 g
£ 00 40 32

2. The last column is a zero column and therefore its en-
tries donot add up to 1.

= A 0543 1j5> .
3. L= 972 |. where j5 is the all one 5-
<O4><5 B’ %J4 I5

0 % 0

. 1 0 1

vector, j4 is the all one 4-vector and B’ = 2
0 % 0

1 1

0 5 3

4. Since Span(es,es,es, eq, es) is invariant the matrix
is reducible.

5. Span(

o © © O gNYeXEeEs
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6.

19290 1 10 28 1 1 1 4
36 72 36 36 36 36 36 36 36
0 1 101 311 111
36 36 36 36 36 36 36 36 9
1029 10029 101 111
36 72 36 72 36 36 36 36 9
0 01 01 1 1 1 o1 11
36 36 36 36 36 36 36 36 9
0 1 1 29 T 0101 1
36 36 36 72 36 36 36 36 9
101 01 111 1001 1
36 36 36 36 36 36 36 36 9
101 01 1 17T 1 29 1
36 36 36 36 36 9 36 72 9
101 1 o 1 1
36 36 36 36 36 36 36 36 9

11 T 10 29 1
36 36 36 36 36 36 36 72 9
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