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Chapter 1

Vector Spaces

1.1. Fields

1. Let z = a + bi, w = c + di with a, b, c, d ∈ R. Then
|z|2 = a2 + b2, |w|2 = c2 + d2 and |z|2|w|2 = (a2 +

b2)(c2 + d2) = a2c2 + a2d2 + b2c2 + b2d2. On the other
hand, zw = (ac − bd) + (ad + bc)I and |zw|2 = (ac −
bd)2+(ad+bc)2 = a2c2+b2d2−2abcd+a2d2+b2c2+

2abcd = a2c2 + b2d2 + a2d2 + b2c2.

2. Part ii) of Theorem (1.1) follows from part i).

Part iii) of Theorem (1.1) zz = (a + bi)(a − bi) = a2 −
abi+ (bi)a− (bi)(bi) = a2 + b2 = |z|2.

3. Since C is a field and Q[i] is a subset of C it suffices to
prove the following:

(i) If x, y ∈ Q[i] then x+ y ∈ Q[i];

(ii) If x ∈ Q[i] then −x ∈ Q[i];

(iii) If x, y ∈ Q[i] then xy ∈ Q[i]; and

(iv) If x ∈ Q[i], x �= 0 then 1
x ∈ Q[i].

(i) We can write x = a+ bi, y = c+ di where a, b, c, d ∈
Q. Then a + c, b + d ∈ Q and consequently, x + y =

(a+ c) + (b+ d)i ∈ Q[i].

(ii) If x = a + bi, a, b ∈ Q then −a,−b ∈ Q and −(a +

bi) = −a− bi ∈ Q[i].

(iii) If x = a + bi, y = c + di with a, b, c, d ∈ Q then
ac, ad, bc, bd ∈ Q and therefore (a+ bi)(c+ di) = [ac−
bd] + [ad+ bc]i ∈ Q[i].

(iv) Assume that x = a+ bi with a, b ∈ Q not both zero.
Then in C we have (a + bi)−1 = a

a2+b2 − b
a2+b2 i. How-

ever, if a, b ∈ Q then a2 + b2 ∈ Q whence a
a2+b2 and

b
a2+b2 ∈ Q.

4. Write z = a+ bi, w = c+ di. Then z+w = (a+ c)+

(b+ d)i. Then z + w = (a+ c)− (b+ d)i. On the other
hand, z = a−bi, w = c−di. Then z+w = (a−bi)+(c−
di) = (a+ c)+ [(−b)+ (−d)]i = (a+ c)+ (−b− d)i =

(a+ c)− (b+ d)i.

5. This follows from part ii. of Theorem (1.1.1) since if c
is a real number then c = c. Therefore cz = c z = cz.

6. a) The addition table is symmetric which implies that
addition is commutative. Likewise the multiplication ta-
ble is symmetric from which we conclude that multiplica-
tion is commutative.

b) The entry in the row indexed by 0 and the column in-
dexed the element i is i for i ∈ {0, 1, 2, 3, 4}.

c) Every row of the addition table contains a 0. If the row
is headed by the element a and the column in which the 0
occurs is indexed by b then a+b = 0. This establishes the
existence of a negative of a with respect to 0. Note that
since there is only one zero in each row and column, the
negative is unique.

d) The entry in the row indexed by 1 and the column in-
dexed the element i is i for i ∈ {1, 2, 3, 4}.

e) Every row has a 1 in it. If the row is headed by the
element a and the column in which the 1 occurs is in-
dexed by c then ac = 1. This establishes the existence of

K23692_SM_Cover.indd   9 02/06/15   3:11 pm



2 Chapter 1. Vector Spaces

a multiplicative inverse of a with respect to 1. Note that
since each row and column has only a single 1, the mul-
tiplicative inverse of a non-zero element with respect to 1
is unique.

7. The additive inverse (negative) of 2 is 3. So add 3 to
both sides

(3x+ 2) + 3 = 4 + 3

3x+ (2 + 3) = 2

3x+ 0 = 2

3x = 2

Now multiply by 2 since 2 · 3 = 1.

2(3x) = 2 · 2

(2 · 3)x = 4

1 · x = 4

x = 4.

The unique solution is x = 4.

8.

2x− (1 + 2i) = −ix+ (2 + 3i)

Add 1 + 2i to both sides to obtain the equation

2x = −ix+ (3 + 4i)

Add ix from both sides to obtain

(2 + i)x = 3 + 4i

Divide by 2 + i to obtain the equation

x =
3 + 4i

2 + i

After multiplying the complex number on the right hand
side by 2−i

2−i we obtain

x =
(3 + 4i)(2− i)

(2 + i)(2− i)

After performing the arithmetic on the right hand side we
get

x = 2 + i

9. Existence of an additive inverse, associativity of addi-
tion, the neutral character of 0, the existence of multiplica-
tive inverses for all non-zero elements, the associativity of
multiplication, the neutral character of 1 with respect to
multiplication.

1.2. The Space Fn

1.




2i

−2 + 2i

4− 2i




2.




2

6

−4




3.



−6i

2i

8i




4.




1 + 3i

2

−1 + i




5.



−3 + 2i

−2− i

1



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1.3. Introduction to Vector Spaces 3

6.



1 + 2i

3 + i

5




7.



0

0

0




8.



4

1

1




9.



1

4

2




10.



3

1

2




11. v =

(
3− i

3 + i

)

12. v =

(
4

2

)

1.3. Introduction to Vector
Spaces

1. Set x = 0. Then x + x = 0 + x = x. Now multiply
by the scalar c to get

c(x+ x) = cx

After distributing we get

cx+ cx = cx.

Set y = −(cx) and add to both sides of the equation:

y + (cx+ cx) = y + cx

Use associativity on the left hand side to get

(y + cx) + cx = y + cx = 0

0+ cx = 0

cx = 0.

2. Assume cu = 0 but c �= 0. We prove that u = 0.
Multiply by 1

c to get 1
c (cu) = 1

c0 = 0 by part iii) of
Theorem (1.4). On the other hand, 1

c (cu) = ( 1c c)u =

1u = u. Thus, u = 0.

3. Since v+ (−v) = 0 it follows that v is the negative of
−v, that is, −(−v) = v.

4. Add the negative, −v, of the vector v to both sides of
the equation

v + x = v + y

to obtain

(−v) + [v + x] = (−v) + [v + y].

By the associativity property we have

[(−v) + v] + x = [(−v) + v] + y.

Now use the axiom that states (−v) + v = 0 to get

0+ x = 0+ y

Since 0+ x = x and 0+ y = y we conclude that

x = y.

5. Multiply on the left hand side by the scalar 1
c :

1

c
(cx) =

1

c
(cy).

Now make use of (M3) to get
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4 Chapter 1. Vector Spaces

[
1

c
c]x = [

1

c
c]y.

Since 1
c c = 1 we get

1x = 1y

and then by (M4) we conclude

x = y.

6. Let f, g, h ∈ M(X,F) and a, b ∈ F be scalars. We
show all the axioms hold.

(A1) For any x ∈ X, (f+g)(x) = f(x)+g(x). However,
addition in F is commutative and therefore f(x)+g(x) =

g(x)+ f(x) = (g+ f)(x). Thus, the functions f + g and
g + f are identical.

(A2) For any x ∈ X, [(f + g) + h](x) = (f + g)(x) +

h(x) = [f(x) + g(x)] + h(x). This is just a sum of
elements in F. Addition in F is associative and there-
fore [f(x) + g(x)] + h(x) = f(x) + [g(x) + h(x)] =

f(x) + (g + h)(x) = [f + (g + h)](x). Thus, the func-
tions (f + g) + h and f + (g + h) are identical.

(A3) O is an identity for addition: (O+ f)(x) = O(x)+

f(x) = 0 + f(x) = f(x) and consequently, O+ f = f.

(A4) Let −f denote the function from X to F such that
(−f)(x) = −f(x). Then [(−f) + f ](x) = (−f)(x) +

f(x) = −f(x)+ f(x) = 0 and therefore (−f)+ f = O.

(M1) [a(f + g)](x) = a[f + g)(x)] = a[f(x) + g(x)].

Now, a, f(x), g(x) are elements of F and the distributive
axiom holds in F and therefore a[f(x)+g(x)] = af(x)+

ag(x) = (af)(x) + (ag)(x) = [(af) + (ag)](x). Thus,
the functions a(f + g) and (af) + (ag) are identical.

(M2) [(a + b)f ](x) = (a + b)f(x). Now a, b and f(x)

are all elements of the field F where the distributive ax-
iom holds. Therefore (a + b)f(x) = af(x) + bf(x) =

(af)(x) + (bf)(x) = [af + bf ](x). This shows that the
functions (a+ b)f and af + bf are identical as required.

(M3) [(ab)f ](x) = (ab)f(x). Since a, b, f(x) are in
F and the multiplication in F is associative we have

(ab)f(x) = a[bf(x)] = a[(bf)(x)] = [a(bf)](x). Thus,
the functions (ab)f and a(bf) are equal.

(M4) (1f)(x) = 1f(x) = f(x) so 1f = f.

7. Let f, g, h ∈ M(X,V ) and a, b ∈ F be scalars. We
show all the axioms hold.

(A1) For any x ∈ X, (f+g)(x) = f(x)+g(x). However,
addition in V is commutative and therefore f(x)+g(x) =

g(x)+ f(x) = (g+ f)(x). Thus, the functions f + g and
g + f are identical.

(A2) For any x ∈ X, [(f + g) + h](x) = (f + g)(x) +

h(x) = [f(x) + g(x)] + h(x). This is just a sum of
elements in V. Addition in V is associative and there-
fore [f(x) + g(x)] + h(x) = f(x) + [g(x) + h(x)] =

f(x) + (g + h)(x) = [f + (g + h)](x). Thus, the func-
tions (f + g) + h and f + (g + h) are identical.

(A3) O is an identity for addition: (O+ f)(x) = O(x)+

f(x) = 0+ f(x) = f(x) and consequently, O+ f = f.

(A4) Let −f denote the function from X to V such that
(−f)(x) = −f(x). Then [(−f) + f ](x) = (−f)(x) +

f(x) = −f(x)+f(x) = 0 and therefore (−f)+f = O.

(M1) [a(f + g)](x) = a[f + g)(x)] = a[f(x) + g(x)].

Now, a is a scalar and f(x), g(x) ∈ V. By (M1) applied to
V we have a[f(x)+g(x)] = af(x)+ag(x) = (af)(x)+

(ag)(x) = [af+ag](x). Therefore the functions a(f+g)

and af + ag are equal.

(M2) [(a + b)f ](x) = (a + b)f(x). Now a, b are scalars
and f(x) ∈ V . By axiom (M2) applied to V we have
(a + b)(f(x) = af(x) + bf(x) = (af)(x) + (bf)(x) =

[af + bf ](x). Thus, the functions (a + b)f and af + bf

are equal.

(M3) [(ab)f ](x) = (ab)f(x). Since a, b ∈ F and
f(x) ∈ V we can apply (M3) for V and conclude that
[(ab)f ](x) = (ab)f(x) = a[bf(x)] = a[(bf)(x)] =

[a(bf)](x). Thus, (ab)f = a(bf) as required.

(M4) Finally, (1f)(x) = 1f(x) = f(x) by (M4) applied
to V and therefore 1f = f.
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8. We demonstrate the axioms all hold. So let
u,u1,u2,u3 ∈ U,v,v1,v2,v3 ∈ V and c, d ∈ F. We
then have

(u1,v1) + (u2,v2) = (u1 + u2,v1 + v2).

(u2,v2) + (u1,v1) = (u2 + u1,v2 + v1).

Since addition in U and addition in V is commutative,
u1 + u2 = u2 + u1,v1 + v2 = v2 + v1. Thus, the
vectors are equal. This establishes (A1).

[(u1,v1) + (u2,v2)] + (u3,v3) =

([u1 + u2] + u3, [v1 + v2] + v3).

(u1,v1) + [(u2,v2) + (u3,v3)] =

([u1 + [u2 + u3 v1 + [v2 + v3]).

Since addition in U and addition in V is associative, the
results are identical. Thus, (A2) holds.

(u,v) + (0U ,0W ) = (u+ 0U ,v + 0V ) = (u,v).

So, indeed (0U ,0V ) is an identity for U × V with the
addition as defined.

Moreover,

(u,v) + (−u,−v) = (u+ (−u),v + (−v)) =

(u+ [−u],v + [−v]) = (0U ,0V ).

c[(u1,v1) + (u2,v2)] = c(u1 + u2,v1 + v2) =

(c[u1 + u2], c[v1 + v2]) = (cu1 + cu2, cv1 + cv2)

since the distributive property holds in U and V. On the
other hand,

(cu1 + cu2, cv1 + cv2) =

(cu1, cv1) + (cu2, cv2) =

c(u1,v1) + c(u2,v2).

For the second distributive property we have

[c+d](u,v) = ([c+d]u, [c+d]v) = (cu+du, cv+dv) =

(cu, cv) + (du, dv) = c(u,v) + d(u,v)

[cd](u,v) = ([cd]u, [cd]v) = (c[du], c[dv]) =

c(du, dv) = c[du].

Finally,

1(u,v) = (1u, 1v) = (u,v).

9. Let f, g, h ∈
∏

i∈I Ui, a, b ∈ F.

(A1) For i ∈ I, (f+g)(i) = f(i)+g(i). Now f(i), g(i) ∈
Ui and addition in Ui is commutative and so f(i)+g(i) =

g(i)+f(i) = (g+f)(i). Since i ∈ I is arbitrary, f+g =

g + f.

(A2) For i ∈ I, [(f + g) + h](i) = (f + g)(i) + h(i) =

[f(i) + g(i)] + h(i). Now f(i), g(i), h(i) ∈ Ui and addi-
tion in Ui is associative. Therefore, [f(i)+g(i)]+h(i) =

f(i) + [g(i) + h(i)] = f(i) + [g + h](i) = [f(g + h)](i).

Since i ∈ I is arbitrary, (f + g) + h = f + (g + h).

(A3) [O+ f ])i) = O(i) + f(i) = 0i + f(i) = f(i). So,
O+ f = f.

(A4) Let −f denote the function from I to ∪i∈I such that
(−f)(i) = −f(i) for i ∈ I. Then [(−f) + f ](i) =

(−f)(i) + f(i) = −f(i) + f(i) = 0i and therefore
(−f) + f = O.
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6 Chapter 1. Vector Spaces

(M1) Since (M1) applies to Ui we have [a(f + g)](i) =

a[(f + g)(i)] = a[f(i) + g(i)] = af(i) + ag(i) =

(af)(i) + (ag)(i) = [(af) + (ag)](i) = [af + ag](i).

Thus, the functions a(f + g) and af + ag are equal.

(M2) [(a + b)f ](i) = (a + b)f(i). Now a, b are scalars
and f(i) ∈ Ui. By axiom (M2) applied to Ui we have
(a + b)(f(i) = af(i) + bf(i) = (af)(i) + (bf)(i) =

[af + bf ](i). Thus, the functions (a + b)f and af + bf

are equal.

(M3) [(ab)f ](i) = (ab)f(i). Since a, b ∈ F and f(i) ∈ Ui

we can apply (M3) for Ui and conclude that [(ab)f ](i) =
(ab)f(i) = a[bf(i)] = a[(bf)(i)] = [a(bf)](i). Thus,
(ab)f = a(bf) as required.

(M4) Finally, (1f)(i) = 1f(i) = f(i) by (M4) applied to
Ui. Since i ∈ I is arbitrary, 1f = f.

10. (A1) Since for any two sets U,W we have U �W =

W � U we have U +W = W + U.

(A2) We remark that for three sets U,W,Z that [U�W ]�
Z consists of those elements of U ∪ W ∪ Z which are
contained in 1 or 3 of these sets. This is also true of U �
[W�Z] and therefore we have [U+W ]+Z = U+[W+

Z].

(A3) ∅+U = (∅∪U) \ (∅∩U) = U \ ∅ = U. So, ∅ does
act like a zero vector.

(A4) U + U = (U ∪ U) \ (U ∩ U) = U \ U = ∅. So,
indeed, U is the negative of U.

(M1) 0 · (U + W ) = ∅. Also, 0 · U = 0 · W = ∅ and
∅+ ∅ = ∅.

1 · (U +W ) = U +W and 1 · U = W, 1 ·W = W and
so 1 · U + 1 ·W = U +W = 1 · (U +W ).

(M2) If a = b then a · U = b · U and a · U + b · U =

a · U + a · U = ∅. On the other hand, a + b = 0 and
0 · U = ∅. Therefore we may assume a = 0, b = 1. Then
(a+b) ·U = 1 ·U = U. On the other hand, 0 ·U+1 ·U =

∅+ U = U.

(M3) If either a = 0 or b = 0 then both (ab) · U = ∅ and
a · (b · U) = ∅. Therefore we may assume a = b = 1.

Clearly, 1 · U = U = 1 · (1 · U).

(M4) This holds by the definition of 1 · U.

11. (A1) Since multiplication in R+ is commutative we
have

(
a1
b1

)
+

(
a2
b2

)
=

(
a1a2
b1b2

)
=

(
a2a1
b2b1

)
=

(
a2
b2

)
+

(
a1
b1

)
.

(A2) Since multiplication in R+ is associative we have

[

(
a1

b1

)
+

(
a2
b2

)
] +

(
a3
b3

)
=

(
a1a2
b1b2

)
+

(
a3
b3

)
=

(
(a1a2)a3
(b1b2)b3

)
=

(
a1(a2a3)

b1(b2b3)

)
=

(
a1
b1

)
+ [

(
a2
b2

)
+

(
a2
b3

)
].

(A3)
(
1

1

)
+

(
a

b

)
=

(
1a

1b

)
=

(
a

b

)

(A4)

(
a

b

)
+

(
1
a
1
b

)
=

(
a 1
a

b 1b

)
=

(
1

1

)
.

(M1)

c[

(
a1
b1

)
+

(
a2
b2

)
] =

c

(
a1a2
b1b2

)
=

(
(a1a2)

c

(b1b2)
c

)
=
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1.4. Subspaces of Vector Spaces 7

(
ac1a

c
2

bc1b
c
2

)
=

(
ac1
bc1

)
+

(
ac2
bc2

)
=

c

(
a1
b1

)
+ c

(
a2
b2

)
.

(M2)

(c+ d)

(
a

b

)
=

(
ac+d

bc+d

)
=

(
acad

bcbd

)
=

(
ac

bc

)
+

(
ad

bd

)
=

c

(
a

b

)
+ d

(
a

b

)

(M3)

(cd)

(
a

b

)
=

(
acd

bcd

)
=

(
(ad)c

(bd)c

)
= c

(
ad

bd

)
= c(d

(
a

b

)
).

(M4) 1
(
a

b

)
=

(
a1

b1

)
=

(
a

b

)
.

1.4. Subspaces of Vector
Spaces

1. In order for W to contain the zero vector there must
exist a, b such that

2a − 3b + 1 = 0

−2a + 5b = 0

2a + b = 0

which is equivalent to the linear system

2a − 3b = −1

−2a + 5b = 0

2a + b = 0

which is inconsistent. Thus, W is not a subspace.

2. We show that W is not a subspace by proving it is not
closed under scalar multiplication. Specifically, W con-
tains the vector f(1, 1) = 1+2X2. However, we claim the
vector 2 + 4X2 does not belong to W. If it did then there
exist a, b such that f(a, b) = ab+(a−b)X+(a+b)X2 =

2 + 4X2. We must then have

a − b = 0

a + b = 4
.

This has the unique solution a = b = 2. However, then
ab = 4 �= 2 as required.

3. Suppose



x

y

z


 ∈ W so that 3x− 2y + 4z = 0. Then

3(cx)− 2(cy) + 4(cz) = (3x− 2y + 4z)c = 0c = 0

which implies that



cx

cy

cz


 ∈ W and W is closed under

scalar multiplication.

Suppose



x1

y1
z1


 ,



x2

y2
z2


 ∈ W which implies that

3x1 − 2y1 + 4z1 = 0 = 3x2 − 2y2 + 4z2

It then follows that

3(x1 + x2)− 2(y1 + y2) + 4(z1 + z2) =

[3x1 − 2y1 + 4z1] + [3x2 − 2y2 + 4z2] = 0.

This implies that



x1

y1
z1


 +



x2

y2
z2


 =



x1 + x2

y1 + y2
z1 + z2


 ∈ W

and W is closed under addition. Thus, W is a subspace.
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8 Chapter 1. Vector Spaces

4. Set W = ∪U ∈ FU. In order to show that W is a
subspace we have to show that it is closed under addition
and scalar multiplication.

Closed under scalar multiplication. Assume x ∈ W and
c is a scalar. By the definition of W there is an X ∈ F
such that x ∈ X. Since X is a subspace of V, cx ∈ X and
hence cx ∈ ∪U∈FU = W.

Closed under addition. We need to show if x,y ∈ W then
x + y ∈ W. By the definition of W there are subspaces
X,Y ∈ F such that x ∈ x,y ∈ Y. By our hypothesis
there exists Z ∈ F such that X ∪ Y ⊂ Z. It then follows
that x,y ∈ Z. Since Z is a subspace of V,x + y ∈ Z.

Then x + y ∈ W and W is closed under addition as
claimed.

5. Assume u ∈ U,w ∈ W and c is a scalar. Then c(u +

w) = cu + cw. Since U is a subspace and u ∈ U it
follows that cu ∈ U. Similarly, cw ∈ W. Then

c(u+w) = cu+ cw ∈ U +W.

6. Closed under scalar multiplication. Assume x ∈ U ∪
W and c is a scalar. Then either x ∈ U in which case
cx ∈ U or x ∈ W and cx ∈ W. In either case, cx ∈
U ∪W and U ∪W is closed under scalar multiplication.

Not closed under addition. Since U is not a subset of W
there exists u ∈ U,u /∈ W. Since W is not a subset of U
there is a w ∈ W,w /∈ U. We claim that u+w /∈ U ∪W.

For suppose to the contrary that v = u + w ∈ U ∪ W.

Suppose v ∈ U. Then w = v − u is the difference of
two vectors in U, whence w ∈ U contrary to assumption.
Likewise, if v ∈ W then u = v−w ∈ W, a contradiction.
So, u+w is not in U ∪W and U ∪W is not a subspace.

7. Let W = {
(
a

0

)
|a ∈ R}, X = {

(
0

b

)
|b ∈ R} and

Y = {
(
c

c

)
|c ∈ R}.

8. Take X = {
(
a

0

)
|a ∈ R}, Y = {

(
0

b

)
|b ∈ R}, Z =

{
(
c

c

)
|c ∈ R}.

9. Clearly, Mfin(X,F) is a subset of M(X,F) so we
have to show that it is closed under addition and scalar
multiplication.

Closed under scalar multiplication. Suppose f ∈
Mfin(X,F) and c is a scalar. If c = 0 then cf is the
zero map with support equal to the empty set, which be-
longs to Mfin(X,F). On the other hand, if c �= 0 then
spt(cf) = spt(f) is finite and so cf ∈ Mfin(X,F).

Closed under addition. Assume f, g ∈ Mfin(X,F). If
x /∈ spt(f) ∪ spt(g) the f(x) = g(x) = 0 and (f +

g)(x) = 0. This implies that spt(f+g) ⊂ spt(f)∪spt(g)
and is therefore finite. Thus, f + g ∈ Mfin(X,F).

10. Set W = {f ∈ M(X,F)|f(y) = 0 ∀y ∈ Y }. We
need to show W is closed under scalar multiplication and
addition.

Closed under scalar multiplication. Suppose f ∈ W and
c is scalar, y ∈ Y. Then (cf)(y) = cf(y) = c0 = 0.

Since y is arbitrary, cf ∈ W.

Closed under addition. Suppose f, g ∈ W and y ∈ Y.

Then (f + g)(y) = f(y) + g(y) = 0 + 0 = 0.

11. This is clearly not a subspace since the zero vector
does not belong to it.

12. Closed under scalar multiplication. Suppose f ∈∑
i∈I Ui so that spt(f) is finite and c is a scalar. If c = 0

then cf is the zero vector of
∏

i∈I Ui which has support
the empty set and is in

∑
i∈I Ui. On the other hand, if

c �= 0 then spt(cf) = spt(f) and so is finite and cf ∈∑
i∈I Ui.

Closed under addition. Suppose f, g ∈
∑

i∈I Ui. As in
the proof of 14, spt(f + g) ⊂ spt(f)∪ spt(g) and so is a
finite subset. Then f + g ∈

∑
i∈I Ui.

13. Assume x ∈ X ∩ Y + Z. Then there are vectors
y ∈ Y, z ∈ Z such that x = y + z. Then z = x − y.

Since Y ⊂ X,y ∈ X and because X a subspace we can
conclude that z = x− y ∈ X. In particular, z ∈ X ∩ Z.

Thus, x ∈ Y +(X ∩Z). This proves that X ∩ (Y +Z) ⊂
Y + (X ∩ Z).
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1.5. Span and Independence 9

Conversely, assume that u ∈ Y +(X∩Z). Write u = y+

z where y ∈ Y and z ∈ X∩Z. Then clearly, u ∈ Y +Z.

On the other hand, since Y ⊂ X, z ∈ X ∩ Z, and X is a
subspace, we can conclude that u = y + z ∈ X. Thus,
u ∈ X ∩ (Y + Z). This proves that Y + (X ∩ Z) ⊂
X ∩ (Y + Z) and therefore we have equality.

14. We need to show that Modd(R,R) is closed under
addition and scalar multiplication.

Closed under addition. Assume f, g ∈ Modd(R,R)
so that f(−x) = −f(x), g(−x) = −g(x). Then (f +

g)(−x) = f(−x) + g(−x) = −f(x) + −g(x) =

−(f + g)(x).

Closed under scalar multiplication. Assume f ∈
Modd(R,R) and c ∈ R. Then (cf)(−x) = cf(−x) =

c[−f(x)] = (−cf)(x).

1.5. Span and Independence

1. We need to show that Span(X) ⊂ Span(Y ) and, con-
versely, that Span(Y ) ⊂ Span(X). Since by hypoth-
esis, X ⊂ Span(Y ) it then follows that Span(X) ⊂
Span(Span(Y )) = Span(Y ). In exactly the same way
we conclude that Span(Y ) ⊂ Span(X) and we obtain
the desired equality.

2. Clearly, u, cu+v are both linear combinations of u,v
and consequently, u, cu+ v ∈ Span(u,v). On the other
hand, v = (−c)u + (cu + v) is a linear combination of
u and cu + v. Whence, both u and v are linear combi-
nations of u, cu + v and so u,v ∈ Span(u, cu + v).

Now by exercise 1 we have the equality Span(u,v) =

Span(u, cu+ v).

3. Clearly cu,v ∈ Span(u,v). On the other hand,
u = (1c )(cu) + 0v is in Span(cu,v). Thus, u,v ∈
Span(cu,v) and, using exercise 1, we get the equality
Span(u,v) = Span(cu,v).

4. Since v1, c12v1 + v2, c13v1 + c23v2 + v3

are all linear combinations of v1,v21,v3 it follows

that Span(v1, c12v1 + v2, c13v1 + c23v2 + v3}) ⊂
Span(v1,v2,v3).

On the other hand, v2 = (−c12)v1 + [c12v1 + v2

v3 = (−c13 + c12c23)v2 + (−c23)(c12v + 1 + v2)+

(c13v1 + c23v3 + v3).

Thus, v1,v2,v3 are all linear combinations of v1, c12v1+

v24 and c13v1 + c23v2 + v3. It now follows from exer-
cise 1 that Span(v1,v2,v3) = Span(v1, c12v1, c13v1 +

c23v2 + v3).

5. If v = 0 then 1v = 0 and therefore 0 is linear depen-
dent. On the other hand, if cv = 0, c �= 0 then v = 0.

6. Assume v = γu. Since v �= 0, γ �= 0. Then (−γ)u+

1v = 0 is a non-trivial dependence relation on (u,v) and
consequently, (u,v) is linearly dependent.

Conversely, assume that (u,v) is linearly dependent and
neither vector is 0. Suppose au + bv = 0. If a = 0

then bv = 0 which by exercise implies that v = 0, a
contradiction. So, a �= 0. In exactly the same way, b �= 0.

Now v = (−a
b )u,u = (− b

a )u so v is a multiple of u
and u is a multiple of v.

7. Multiply all the non-zero vectors by 0 and the zero
vector by 1. This gives a non-trivial dependence relation
and so the sequence of vectors is linearly dependent.

8. If i < j and vi = vj then let ci = 1, cj = −1 and
set all the other scalars equal to 0. In this way we obtain
a non-trivial dependence relation.

9. Extend a non-trivial dependence relation on the vectors
of S0 to a dependence relation on S by setting the scalars
equal to zero for every vector v ∈ S \ S0.

10. This is logically equivalent to exercise 9. Alterna-
tively, assume that some subsequence of S is linearly de-
pendent. Then by exercise 9 the sequence S is dependent,
a contradiction.

11. Assume Span(u1, . . . ,uk) ∩ Span(v1, . . . ,vl) =

{0}. Suppose c1, . . . , ck, d1, . . . , dl are scalars and
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10 Chapter 1. Vector Spaces

c1u1 + · · ·+ ckuk + d1v1 + · · ·+ dlvl = {0}.

Then

c1u1 + · · ·+ ckuk = (−d1)v1 + · · ·+ (−dl)vl.

The vector c1u1+ · · ·+ckuk ∈ Span(u1, . . . ,uk) while
d1v1+ · · ·+dlvl ∈ Span(v1, . . . ,vl). By hypothesis the
only common vector is the zero vector. Therefore

c1u1 + · · ·+ ckuk = 0

d1v1 + · · ·+ dlvl = 0

However, since (u1, . . . ,uk) is linearly independent we
get c1 = · · · = ck = 0. Similarly, d1 = · · · = dl =

0. This implies that (u1, . . . ,uk,v1, . . . ,vl) is linearly
independent.

On the other hand, suppose 0 �= w ∈
Span(u1, . . . ,uk) ∩ Span(v1, . . . ,vl). Then there
are scalars c1, . . . , ck, d1, . . . , dl such that

w = c1u1 + · · ·+ ckuk

w = d1v1 + · · ·+ dlvl.

Note that since w �= 0 at least one ci and dj is non-zero.
Now we have

c1u1+· · ·+ckuk+(−d1)v1+· · ·+(−dl)vl = w−w = 0

is a non-trivial dependence relation and therefore
(u1, . . . ,uk,v1, . . . ,vl) is linearly dependent.

12. Since w ∈ Span(u1, . . . ,uk,v) there are scalars
c1, . . . , ck, d such that

w = c1u1 + . . . ckuk + dv.

If d = 0 then w ∈ Span(u1, . . . ,uk) contrary to our
hypothesis. Therefore, d �= 0. But then

v = (−c1
d
)u1 + · · ·+ (−ck

d
)uk +

1

d
w.

Thus, v ∈ Span(u1, . . . ,uk,w) as required.

13. Let c1, c2, c3 be scalars, not all zero, such that
c1(v1 + w) + c2(v2 + w) + c3(v3 + w) = 0. Claim
c1 + c2 + c3 �= 0. Suppose otherwise. Then 0 =

c1(v1+w)+ c2(v2+w)+ c3(v3+w) = c1v1+ c2v2+

c3v3+(c1+c2+c3)w = c1v1+c2v2+c3v3, contrary to
the hypothesis that (v1,v2,v3) is linearly independent. It
now follows that w = − 1

c1+c2+c3
(c1v1+c2v2+c3v3) ∈

Span(v1,v2,v3).

1.6. Bases and Finite
Dimensional Vector Spaces

1. Let B be a basis of V. B has 4 elements since
dim(V ) = 4.

a) Suppose S spans V and |S| = 3. Since B is a basis,
in particular, B is linearly independent. Now by the Ex-
change theorem, 3 = |S| ≥ |B| = 4, a contradiction.

b) Suppose I is a linearly independent subset of V with
five elements. Since B is a basis it spans V. By the ex-
change theorem, 5 = |I| ≤ |B| = 4, a contradiction.

2. If U ⊂ W then, since dim(U) = dim(W ) = 3 we
must have U = W by Theorem (1.22) which contradicts
the assumption that U �= W. So, U is not contained in
W (and similarly, W is not contained in U ). It now fol-
lows that the subspace U +W of V contains U as well as
vectors not in U. Then 4 = dim(V ) ≥ dim(U + W ) >

dim(U) = 3 which implies that dim(U + W ) = 4. By
part ii) of Theorem (1.22), U +W = V.

Since W is not contained in U we know that U ∩W is a
proper subset of U and hence dim(U ∩W ) < dim(U) =
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1.6. Bases and Finite Dimensional Vector Spaces 11

3. It therefore suffices to prove that dim(U∩W ) ≥ 2. Let
(u1,u2,u3) be a basis for U and (w1,w2,w3) be a basis
for W with w3 /∈ U. If Span(w1,w3) ∩ U = {0} then
by Exercise (1.5.11) the sequence (u1,u2,u3,w1,w3)

is linearly independent which contradicts the assumption
that dim(V ) = 4. Thus, Span(w1,w3)∩U �= {0}. Since
w1 /∈ U any non-zero vector aw1 + bw3 which is in U

must have a �= 0. By multiplying by 1
a we can say there

is an c ∈ F such that w1 + cw ∈ U. In exactly the same
way we can conclude that there must be a d ∈ F such that
w2 + dw3 ∈ U. We claim that (w1 + cw3,w2 + dw3) is
linearly independent. Suppose e1, e2 ∈ F and

e1(w1 + cw3) + e2(w2 + dw3) = 0

Then e1w1 + e2w2 + (ce1 + de2)w3 = 0. However,
since (w1,w2,w3) is linearly independent we must have
e1 = e2 = 0.

Since (w1 + cw3,w2 + dw3) is a linearly independent
sequence from U∩W we conclude that dim(U∩W ) ≥ 2.

3. By Exercise (1.5.11) the sequence
(u1,u2,w1,w2,w3) is linearly independent and so it
suffices to show that (u1,u2,w1,w2,w3) is a spanning
sequence. Toward that end consider an arbitrary vector
v ∈ U +W. By the definition of U +W there are vectors
u ∈ U and w ∈ W such that v = u +w. Since u ∈ U

and (u1,u2) is a basis for U there are scalars a1, a2 ∈ F
such that u = a1u1 + a2u2. Similarly, there are scalars
b1, b2, b3 ∈ F such that w = b1w1+ b2w2+ b3w3. Thus,
v = u+w = a1u1 + a2u2 + b1w1 + b2w2 + b3w3 and
therefore (u1,u2,w1,w2,w3) is a spanning sequence as
required.

4. We are assuming that dim(V ) = n, S =

(v1,v2, . . . ,vn) is a sequence of vectors from V and S

spans V. We need to prove that S is linearly independent.
For 1 ≤ j ≤ n let S − vj denote the sequence obtained
from S by deleting vj .

Suppose to the contrary that S is not linearly independent.
Then for some j, 1 ≤ j ≤ n,vj is a linear combination of
S−vj by Theorem (1.14). Then by Theorem (1.13), V =

Span(S) = Span(S − vj). But then by the exchange
theorem no independent sequence of V can have more
than n − 1 vectors which contradicts the assumption that
bases have cardinality n.

5. We are assuming dim(V ) = n, S = (v1,v2, . . . ,vm)

with m > n and Span(S) = V. We have to prove that
some subsequence of S is a basis of V. Toward that end,
let S0 be a subsequence of S such that Span(S0) = V

and the length of S0 is as small as possible. We claim that
S0 is linearly independent and therefore a basis of V. Let
S0 = (w1,w2, . . . ,wk) and assume to the contrary that
S0 is linearly dependent. Then for some j, 1 ≤ j ≤ k,wj

is a linear combination of S0 − wj by Theorem (1.14).
Then by Theorem (1.13), V = Span(S0) = Span(S0 −
wj). However, this contradicts the assumption that S0 is
a spanning subsequence of S of minimal length. Thus, S0

is linearly independent and a basis as claimed.

6. Assume dim(U ∩ W ) = l, dim(U) − l =

m, dim(W ) − l = n (so that dim(U) = l + m and
dim(W ) = l + n). Choose a basis (x1, . . . ,xl) for
U ∩ W. This can be extended to a basis of U. Let
(u1, . . . ,um) be a sequence of vectors from U such that
(x1, . . . ,xl,u1, . . . ,um) is a basis for U. Likewise there
is a sequence of vectors (w1, . . . ,wn) from W such
that (x1, . . . ,xl,w1, . . . ,wn) is a basis for W. We claim
that (x1, . . . ,xl,u1, . . . ,um,w1 . . . ,wn) is a basis for
U +W.

We first show that S =

(x1, . . . ,xl,u1, . . . ,um,w1 . . . ,wn) is linearly in-
dependent. Suppose ai, 1 ≤ i ≤ l, bj , 1 ≤ j ≤ m and
ck, 1 ≤ k ≤ n are scalars such that

a1x1 + · · ·+ alxl + b1u1 + · · ·+ bmum+

c1w1 + · · ·+ cnwn = 0.

We then have that

a1x1 + · · ·+ alxl + b1u1 + · · ·+ bmum =
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12 Chapter 1. Vector Spaces

−(c1w1 + · · ·+ cnwn) (1.1)

Note the vector on the left hand side of Equation (1.1)
belongs to U and the vector on the right hand side be-
longs to W. Therefore, since we have equality the vec-
tor belongs to U ∩ W = Span(x1, . . . ,xl). However,
since (x1, . . . ,xl,w1, . . . ,wn) is linearly independent,
by Exercise (1.5.11) we must have Span(x1, . . . ,xl) ∩
Span(w1, . . . ,wn) = {0}. Consequently,

a1x1 + · · ·+ alxl + b1u1 + · · ·+ bmum =

−(c1w1 + . . . cnwn) = 0.

However, since (w1, . . . ,wn) is linearly independent
this implies that c1 = · · · = cn = 0. Also, since
(x1, . . . ,xl,u1, . . . ,um) is linearly independent we get
a1 = · · · = al = b1 = · · · = bm = 0. Thus, all ai, bj , ck
are zero and the sequence S is linearly independent.

We next show that S spans U + W. Suppose v is
an arbitrary vector in U + W. Then there are vectors
u ∈ U and w ∈ W such that v = u + w. Since
(x1, . . . ,xl,u1, . . . ,um) is a basis for U there are scalars
ai, 1 ≤ i ≤ l, bj , 1 ≤ j ≤ m such that

u = a1x1 + · · ·+ alxl + b1u1 + · · ·+ bmum.

Since (x1, . . . ,xl,w1, . . . ,wn) is a basis for W there are
scalars ci, 1 ≤ i ≤ l, dk, 1 ≤ k ≤ n such that

w = c1x1 + · · ·+ clxl + d1w1 + · · ·+ dnwn.

But now we have

v = u+w =

(a1x1 + · · ·+ alxl + b1u1 + · · ·+ bmum)+

(c1x1 + · · ·+ clxl + d1w1 + · · ·+ dnwn) =

(a1 + c1)x1 + · · ·+ (al + cl)xl+

b1u1 + · · ·+ bmum + d1w1 + . . . dnwn.

Thus, S spans U + W as required and S is a basis of
U +W. It follows that dim(U +W ) = l +m+ n. Now

dim(U)+dim(W ) = (l+m)+(l+n) = 2l+m+n =

l + (l +m+ n) = dim(U ∩W ) + dim(U +W ).

7. Let (x1,x2,x3) be a basis for X and (y1,y2,y3) be a
basis for Y. If X ∩Y = {0} then (x1,x2,x3,y1,y2,y3)

is linearly independent by Exercise 11 of Section (1.5) .
But this contradicts dim(V ) = 5. Thus, X ∩ Y �= {0}.

8. Since U + W = V, dim(U + W ) = dim(V ) = n.

Making use of Exercise 8 we get

dim(U ∩W ) = dim(V )− dim(U)− dim(W ) =

n− k − (n− k) = 0.

Since dim(U ∩W ) = 0, U ∩W = {0} as required.

9. Set

X = {




x1

x2

x3

0

0

0




|x1, x2, x3 ∈ F},

Y = {




x1

x2

x3

x4

0

0




|x1, x2, x3, x4 ∈ F},
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1.6. Bases and Finite Dimensional Vector Spaces 13

Z = {




x1

x2

x3

x4

x5

0




|x1, x2, x3, x4, x5 ∈ F}

Note that dim(X) = 3, dim(Y ) = 4, dim(Z) = 5.

a) Set

v1 =




1

0

0

0

0

0




,v2 =




0

1

0

0

0

0




,v3 =




0

0

1

0

0

0




w1 =




1

0

−1

0

0

0




,w2 =




0

1

−1

0

0

0




,w3 =




1

1

1

0

0

0




b) Let v1,v2,v3 be as in a) and now set

w1 =




1

0

0

1

0

0




,w2 =




0

1

0

1

0

0




,w3 =




0

0

1

0

0

0




.

Note that Span(v1,v2,v3) = X and that w1,w2,w3 /∈
X. Therefore Span(v1,v2,v3) �= Span(w1,w2,w3).

On the other hand, v1,v2,v3,w1,w2,w3 ∈ Y. By the
argument of Exercise 2 we have

dim[Span(v1,v2,v3) ∩ Span(w1,w2,w3)] = 2.

c) Let v1,v2,v3 be as in a) and now set

w1 =




0

0

0

1

0

0




,w2 =




0

0

0

0

1

0




,w3 =




0

0

1

1

1

0




Set V = Span(v1,v2,v3),W = Span(w1,w2,w3).

Since v1,v2,v3,w1,w2,w3 ∈ Z, V +W ⊂ Z and there-
fore

dim(V +W ) ≤ dim(Z) = 5 (1.2)

On the other hand, (v1,v2,v3,w1,w2) is linearly inde-
pendent and therefore

dim(V +W ) ≥ 5 (1.3)

From Equation (1.2) and (1.3) we get

dim(V +W ) = 5.

Now use Exercise 6:

dim(V ) + dim(W ) = dim(V ∩W ) + dim(V +W )

Since dim(V ) = dim(W ) = 3 and dim(V + W ) = 5

we conclude that dim(V ∩W ) = 1 as required.

10. a) There are 8 non-zero vectors and any one can be
the first vector in a basis. Suppose we choose the vector v.
The second vector must be linearly independent and there-
fore not a multiple of v. There are 3 multiples: 0,v,−v.

So there are 9 - 3 = 6 choices for the second vector. Thus,
there are 8× 6 = 48 bases.

b) There are 24 non-zero vectors and any can be the
first vector in a basis. Suppose we choose the vector
v. The second vector must be linearly independent and
therefore not a multiple of v. There are 5 multiples:
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14 Chapter 1. Vector Spaces

0,v, 2v, 3v, 4v. So there are 25 - 5 = 20 choices for the
second vector. Thus, there are 24× 20 = 480 bases.

c) There are p2 − 1 non-zero vectors and any can be
the first vector in a basis. Suppose we choose the vec-
tor v. The second vector must be linearly independent
and therefore not a multiple of v. There are p multiples:
0,v, . . . , (p − 1)v. So there are p2 − p choices for the
second vector. Thus, there are (p2 − 1)(p2 − p) bases.

11. Let dim(V ) = n and dim(U) = k. If U = V we can
take W = {0} so we may assume k < n. Choose a basis
BU = (u1, . . . ,uk) for U. By part 1) of Theorem (1.24)
we can expand BU to a basis, B = (u1, . . . ,un) for V. Set
W = Span(uk+1, . . . ,un). Then W is a complement to
U.

12. If (v1, . . . ,vk) ⊂ W then V = Span(v1, . . . ,vk) ⊂
Span(W ) = W , a contradiction.

13. First assume that X ∩ Y = {0}. Let (x1, . . . ,xk)

be basis for X and (y1, . . . ,yk) a basis for Y . Set ui =

xi + yi and U = Span(u1, . . . ,uk). Then X ∩ U =

Y ∩ U = 0 and X ⊕ U = Y ⊕ U = X ⊕ Y . Let W be a
complement to X + Y in V and set Z = U ⊕W .

Assume X ∩ Y �= {0} and let (v1, . . . ,vj) be a basis for
X ∩ Y . Set s = k− j and let (x1, . . . ,xs) be a sequence
of vectors from X such that (v1, . . . ,vk,x1, . . . ,xs) is a
basis of X and similarly let (y1, . . . ,ys) be a sequence
of vectors from Y such that (u1, . . . ,vj ,y1, . . . ,vs) is a
basis for Y . Set ui = xi + yi, 1 ≤ i ≤ s and U =

Span(u1, . . . ,us). Then X ∩ U = Y ∩ U = {0} and
X ⊕ U = Y ⊕ U = X + Y . Let W be a complement to
X + Y in V and set Z = U ⊕W .

1.7. Bases of Infinite
Dimensional Vector Spaces

1. First we show that {χx|x ∈ X} is independent. If
not, then there must exist a finite subset {χxi

|1 ≤ i ≤ n}
which is dependent. There there are scalars, ci such that

f =
n∑

i=1

ciχxi

is the zero function. In particular, for each i, f(xi) = 0.

However, f(xi) = ci. Thus, c1 = · · · = cn = 0. Thus,
{χx|x ∈ X} is linearly independent.

Now we need to show that {χx|x ∈ X} spans. Let
f ∈ Mfin(X,F) be a non-zero function. Then spt(f)

is non-empty but finite. Suppose spt(f) = {x1, . . . , xn}.
Set ci = f(xi). Then the function f and

∑n
i=1 ciχxi

are
equal.

2. First of all suppose X is an n−dimensional vector
space over Q say with basis (v1, . . . ,vn). Then there
is a one-to-one set correspondence between V and Qn,

namely taking
∑n

i=1 aivi to



a1
...
an


 . Therefore the cardi-

nality of X is the same as the cardinality of Qn which is
the same as the cardinality of Q.

Suppose B is a basis of R as a vector space over Q. Let
Pfin(B) be all the finite subsets of B. Then

R = ∪B∈Pfin(B)Span(B).

As shown above, for any B ∈ Pfin(B), the cardinality of
Span(B) is countable.

For an infinite set X the cardinality of the finite subsets
of X is the same as the cardinality of X. Also, if Y is an
infinite set and for each y ∈ Y, Sy is a countable set then
∪y∈Y Sy has cardinality no greater then Y. It now follows
that the cardinality of R is no greater than the cardinality
of B. Since B is a subset of R we conclude that B and R
have the same cardinality.

3. Choose a basis BU . This can be extended to a basis B
for V. Let W = Span(B\BU ). Then W is a complement
to U in V.

4. Let B be a basis for V . Choose a subset Xn of B
with cardinality n. Then Un = Span(B \ Xn) satisfies
dim(V/Un) = n.
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1.8. Coordinate Vectors 15

1.8. Coordinate Vectors

1a) Since dim(F2[x]) is 3 and there are three vectors in
the sequence, by the half is good enough theorem it suf-
fices to show the vectors are linearly independent.

Thus, suppose c1, c2, c3 are scalars such that

c1(1 + x) + c2(1 + x2) + c3(1 + 2x− 2x2) = 0

After distributing and collecting terms we obtain

(c1 + c2 + c3) + (c1 + 2c3)x+ (c2 − 2c3)x
2 = 0

This gives rise to the homogeneous linear system

c1 + c2 + c3 = 0

c1 + 2c3 + 0

c2 − 2c3 + 0

This system has only the trivial solution c1 = c2 = c3 =

0. Thus, the vectors are linearly independent as required.

1b) To compute [1]F we need to determine c1, c2, c3 such
that

(c1 + c2 + c3) + (c1 + 2c3)x+ (c2 − 2c3)x
2 = 1

This gives rise to the linear system

c1 + c2 + c3 = 1

c1 + 2c3 = 0

c2 − 2c3 = 0

which has the unique solution [1]F =



−2

2

1


 . In a simi-

lar manner [x]F =




3

−1

−1


 and [x2]F =




2

−1

−1


 .

2. Set cj =



c1j
c2j
c3j


 , j = 1, 2, 3. This means that

uj = c1jv1 + c2jv2 + c3jv3.

If [x]B1 =



a1
a2
a3


 then x = a1u1 + a2u2 + a3u3.

It then follows that

x = a1(c11v1 + c21v2 + c31v3)+

a2(c12v1 + c22v2 + c32v3)+

a3(c13v1 + c23v2 + c33v3) =

(a1c11 + a2c12 + a3c13)v1+

(a1c21 + a2c22 + a3c23)v2+

(a1c31 + a2c32 + a3c33)v3.

Consequently, [x]B2
=



a1c11 + a2c12 + a3c13
a1c21 + a2c22 + a3c23
a1c31 + a2c32 + a3c33


 =

a1



c11
c21
c31


+ a2



c12
c22
c32


+ a3



c31
c32
c33


 =

(
a1c1 + a2c2 + a3c3

)

3a) For i = 0, 1, 2, 3 we have fj(i) = 1 if i = j and 0
otherwise. We claim that implies that (f1, f2, f3, f4) is
linearly independent. For suppose c1f1 + c2f2 + c3f3 +

c4f4 is the zero function. Substituting i with i = 0, 1, 2, 3

we get 0 = ci+1. Thus, all the ci = 0. Now since there
are 4 vectors and dim(R3[x]) = 4 it follows that F is a
basis for R3[x].

b) Suppose g = c1f1 + c2f2 + c3f3 + c4f4. Then g(i) =

c1fi(i)+ c2f2(i)+ c3f3(i)+ c4f4(i) = ci+1 as required.
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16 Chapter 1. Vector Spaces

4. [1]F =




1

1

1

1


 , [x]F =




0

1

2

3


 , [x2]F =




0

1

4

9


 , [x3]F =




0

1

8

27


 .

5. Assume that Span(u1, . . . ,uk) = V and that c ∈ Fn.

Let x ∈ V be the vector such that [x]B = c. By hypoth-
esis x ∈ Span(u1, . . . ,uk). By Theorem (1.29), c is a
linear combination of ([u1]B, [u2]B, . . . , [uk]B), equiva-
lently, c ∈ Span([u1]B, [u2]B, . . . , [uk]B).

Conversely, assume that Span([u1]B, . . . , [uk]B) = Fn

and that x ∈ V. Let c = [x]B. By hypothesis, c is a
linear combination of ([u1]B, [u2]B, . . . , [uk]B). Then by
Theorem (1.29) it follows that x is a linear combination
of (u1,u2, . . . ,uk).

6. This follows from Exercise 5 and the half is good
enough theorem.
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Chapter 2

Linear Transformations

2.1. Introduction to Linear
Transformations

1. Set e1 =



1

0

0


 , e2 =



0

1

0


 , e3 =



0

0

1


, so that

(e1, e2, e3) is a basis of F3. Then T (ae1 + be2 + ce3) =

a(1 + x+ x2) + b(1− x2) + c(−2− x2).

By Theorem (2.5) it follows that T is a linear transforma-
tion.

2. We show the additive property is violated:

T

(
1 0

0 0

)
= T

(
0 0

0 1

)
=

(
0

0

)
. It should then be the

case that T
(
1 0

0 1

)
=

(
0 0

0 0

)
. However, T

(
1 0

0 1

)
=

(
1 0

0 0

)
.

3. T (a

(
1

0

)
+ b

(
0

1

)
) = a



2

0

4


 + b



−3

0

5


 . Now by

Theorem (2.5) it follows that T is a linear transformation.

4.

T (

(
x1

y1

)
+

(
x2

y2

)
) = T

(
x1 + x2

y1 + y2

)
=

(
ex1+x2

ey1+y2

)
=

(
ex1ex2

ey1ey2

)
=

(
ex1

ey1

)
+

(
ex2

ey2

)
= T

(
x1

y1

)
+ T

(
x2

y2

)
.

T (c

(
x

y

)
) = T (

(
cx

cy

)
) =

(
ecx

ecy

)
=

(
(ex)c

(ey)c

)
= c

(
ex

ey

)
= cT

(
x

y

)
.

5. Let u1,u2 ∈ U, c1, c2 ∈ F. Then (T ◦ S)(c1u1 +

c2u2) = T (S(c1u1 + c2u2)). Since S is a linear trans-
formation S(c1u1+c2u2) = c1S(u1)+c2S(u2). It then
follows that

T (S(c1u1 + c2u2)) = T (c1S(u1) + c2S(u2)).

Since T is a linear transformation

T (c1S(u1)+ c2S(u2)) = c1T (S(u1))+ c2T (S(u2)) =

c1(T ◦ S)(u1) + c2(T ◦ S)(u2).

It now follows that T ◦ S is a linear transformation.

6. Let v1,v2 ∈ V. Then by the definition of S + T we
have

(S + T )(v1 + v2) = S(v1 + v2) + T (v1 + v2)

Since S, T are linear transformations
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18 Chapter 2. Linear Transformations

S(v1 + v2) = S(v1) + S(v2),

T (v1 + v2) = T (v1) + T (v2).

We then have

S(v1 + v2) + T (v1 + v2) =

[S(v1) + S(v2)] + [T (v1) + T (v2)] =

[S(v1) + T (v1)] + [S(v2) + T (v2)] =

(S + T )(v1) + (S + T )(v2).

Now let v ∈ V, c ∈ F. Then by the definition of S + T

(S + T )(cv) = S(cv) + T (cv)

Since S, T are linear we have S(cv) = cS(v), T (cv) =

cT (v). Then

S(cv) + T (cv) = cS(v) + cT (v) =

c[S(v) + T (v)] = c[(S + T )(v)].

7. Let v ∈ V and write v = x + y where x ∈ X and
y ∈ Y.

a) P1(v) = x and P1(x) = x. Consequently, P1 ◦
P1(v) = P1(v). In exactly the same way, P2 ◦ P2 = P2.

b) Now (P1 + P2)(v) = P1(v) + P2(v) = x + y = v

and therefore P1 + P2 is the identity transformation of V.

c) Note that P1(y) = P2(x) = 0. In now follows that
(P1 ◦ P2)(v) = P1(P2(v)) = P1(y) = 0 and therefore
P1 ◦ P2 = 0V . In a similar fashion P2 ◦ P1 = 0V .

8. By Exercise 6, P1 + P2 = IV . Then T = IV ◦ T =

(P1 + P2) ◦ T = (P1 ◦ T ) + (P2 ◦ T ). Since P1 ◦ T

and P2 ◦ T are linear transformations, by Lemma (2.2)
T = (P1 ◦ T ) + (P2 ◦ T ) is a linear transformation.

9. Let v ∈ V be an arbitrary vector and set x =

P1(v),y = P2(v). Then x ∈ X,y ∈ Y so x + y ∈
X + Y. By hypothesis, P1 + P2 = IV and therefore
v = (P1 + P2)(v) = P1(v) + P2(v) = x + y. As v

is arbitrary we conclude that V = X + Y. On the other
hand, assume v ∈ X ∩Y. Since v ∈ Y, P2(v) = v. Since
v ∈ X,P1(v) = v. It then follows that (P1 ◦ P2)(v) =

P1(P2(v)) = P1(v) = v. However, we are assuming that
P1 ◦P2 = 0V and therefore v = (P1 ◦P2)(v) = 0. Thus,
X ∩ Y = {0}.

10. Let B = (v1, . . . ,vn) be a basis for V. Now T (B) =
(T (v1), . . . , T (vn)) is a sequence of n vectors in W and
dim(W ) = m < n. By the Exchange theorem there are
scalars c1, . . . , cn, not all zero, such that

c1T (v1) + · · ·+ cnT (vn) = 0W .

Since T is a linear transformation

c1T (v1) + · · ·+ cnT (vn) = T (c1v1 + . . . cnvn).

Since not all c1, c2 . . . , cn are zero and (v1, . . . ,vn) is a
basis, the vector v = c1v1 + . . . cnvn �= 0V and satisfies
T (v) = 0W .

11. Π(v1 + v2) = (v1 + v2) +W = (v1 +W ) + (v2 +

W ) = Π(v1) + Π(v2).

Π(cv) = (cv) +W = c(v +W ) = cΠ(v).

12. If wj ∈ R(T ) then there is a vector vj ∈ V such
that T (vj) = wj . Now let w ∈ W be arbitrary. Since
(w1, . . . ,wm) is a spanning sequence for W there are
scalars c1, . . . , cm such that

w = c1w1 + . . . cmwm = c1T (v1) + . . . cmT (vm).

Set v = c1v1+ . . . cmvm. Since T is a linear transforma-
tion

T (v) = T (c1v1 + · · ·+ cmvm) =

c1T (v1) + . . . cmT (vm) =

c1w1 + . . . cmwm = w.

Since w is arbitrary this proves that R(T ) = W.
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2.1. Introduction to Linear Transformations 19

13. Since each T (vi) ∈ R(T ) and R(T ) is a subspace of
W it follows that Span(v1, . . . ,vn) ⊂ R(T ) so we have
to prove the reverse inclusion.

Assume w ∈ R(T ). Then there exists v ∈ V such that
T (v) = w. Since (v1, . . . ,vn) is a basis for V there are
scalars c1, . . . , cn such that v = c1v1 + · · ·+ cnvn. Then

w = T (v) = T (c1v1 + · · ·+ cnvn) =

c1T (v1) + · · ·+ cnT (vn)

The last equality follows from Lemma (2.1). Clearly,
c1T (v1)+ · · ·+ cnT (vn) is in Span(T (v1), . . . , T (vn))

which completes the proof.

14. Let T : V → W be a linear transformation. Let
T (vj) = a1jw1 + · · · + amjwm. Consider the linear
transformation

S =
∑
i,j

aijEij .

Claim that S = T. Towards this end it suffices to prove
that S(vj) = T (vj) for all j. Now since Eik(vj) = 0W

for k �= j we have

S(vj) =

m∑
i=1

aijEij(vj) =

n∑
i=1

aijwi = a1jw1 + · · ·+ amjwm = T (vj)

as required.

On the other hand, suppose S =
∑

i,j aijEij is the zero
function from V to W which takes every vector of V

to the zero vector of W. In particular, S(vj) = 0W .

Thus, S(vj) =
∑m

i=1 aijEij(vj) =
∑m

i=1 aijwi = 0W .

However, since (w1, . . . ,wm) is a basis of W we must
have aij = · · · = amj = 0. Since this holds for every
j, 1 ≤ j ≤ n we have all aij = 0 and the Eij are
linearly independent. With what we have proved above,
(E11, E21, . . . , Em1, E12, . . . , Em2, . . . , E1n, . . . , Emn)

is a basis for L(V,W ). It now follows that
dim(L(V,W )) = mn.

15. Let X consist of all pairs (A, φ) where A ⊂ B, φ is a
linear transformation from Span(A to W and φ restricted
to A is equal to f restricted to A. Order X as follows:
(A, φ) ≤ (A′, φ′) if and only if A ⊂ A′ and φ′ restricted
to Span(A) is equal to φ. We prove that every chain has
an upper bound.

Thus, assume that C = {(Ai, φi)|i ∈ I} is a chain in X .

Set A = ∪i∈IAi. Define φ as follows: If v ∈ Span(Ai)

then φ(v) = φi(v). We need to show this is well defined.
Suppose v ∈ Span(Ai) ∩ Span(Aj) for i, j ∈ I. Since
C is a chain either Ai ⊂ Aj or Aj ⊂ Ai. Assume Ai ⊂
Aj . Also, since C is a chain, φj restricted to Ai is φi. It
then follows that φj(v) = φi(v) since φi, φj are linear
transformations.

Now by Zorn’s lemma there exists a maximal element
(A, φ). We need to show that A = B. Suppose to the con-
trary that A �= B and let v ∈ B\A and set A′ = A∪{v}.
Define φ′ : Span(A)⊕Span(v) as follows: φ′(x+cv) =

φ(x) = cf(v). Then φ′ is linear and φ′ restricted to A′

is equal to f restricted to f. So, (A′, φ′) ∈ X which con-
tradicts the maximality of (A, φ). Therefore A = B as
claimed.

16. Let c1, . . . , ck be scalars such that c1v1+· · ·+ckvk =

0V . We need to show that c1 = · · · = ck = 0. Applying
T we get

T (c1v1 + · · ·+ ckvk) = T (0V ) = 0W .

By Lemma (2.1)

T (c1v1 + · · ·+ ckvk) =

c1T (v1) + · · ·+ ckT (vk) = c1w1 + · · ·+ ckwk.

Since (w1, . . . ,wk) is assumed to be linearly independent
we have c1 = · · · = ck = 0 as required.
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20 Chapter 2. Linear Transformations

2.2. Range and Kernel of a
Linear Transformation

1. There are three vectors in the basis for R(T ) and there-
fore rank(T ) = 3. Since dim(M23(R) = 6 applying the
rank-nullity theorem we get

rank(T ) + nullity(T ) = dim(M23(R))

3 + nullity(T ) = 6

Thus, nullity(T ) = 3.

2. Ker(T ) = Span((x − a)(x − b), x(x − a)(x − b)).

The nullity of T is 2. Since dim(F3[x]) = 4 by the
rank-nullity theorem we have dim(Ker(T )) = 2. We can

see that later directly by noting that T (x−b
a−b ) =

(
1

0

)
and

T (x−a
b−a ) =

(
0

1

)
.

3. T (a+ bx+ cx2 + dx3) =

a




1

1

1

1


+ b




2

3

1

2


+ c




0

1

−1

0


+ d




2

1

1

2


 .

It follows that

R(T ) = Span(




1

1

1

1


 ,




2

3

1

2


 ,




0

1

−1

0


 ,




2

1

1

2


).

The first, second and fourth vectors are a basis for this
subspace:

R(T ) = Span(




1

1

1

1


 ,




2

3

1

2


 ,




2

1

1

2


)

Ker(T ) = Span(2 − x + x2), rank(T ) = 3, and
nullity(T ) = 1.

4. An arbitrary vector a + bx + cx2 ∈ F2[x] is the im-

age of
(
a b

c 0

)
. This proves that T is surjective. T can-

not be an isomorphism since dim(M22(F)) = 4 > 3 =

dim(F2[x]).

5. The only solution to the linear system

a + b = 0

a − 2b − 2c = 0

b + c = 0

a + 2b + c = 0

is the trivial one a = b = c = 0. Therefore Ker(T ) =

{



0

0

0


} which implies that T is one-to-one. On the other

hand, since dim(F3) = 3 and dim(M22(F)) = 4, the
spaces cannot be isomorphic.

6. R(T ) = Span(



1

1

1


 ,



−1

1

2


 ,



1

1

4


) = F3. Thus,

T is surjective. By the half is good enough theorem for
transformations, T is an isomorphism.

7. Let w ∈ W be arbitrary. Since T is onto there exists
an element v ∈ V such that T (v) = w. Since S is onto
there exists and element u ∈ U such that S(u) = v. Then
(T ◦S)(u) = T (S(u)) = T (v) = w. We have thus shown
the existence of an element u ∈ U such that (T ◦S)(u) =
w. This proves that T ◦ S is surjective.

8. Suppose that (T ◦ S)(u) = (T ◦ S)(u′). Then
T (S(u)) = T (S(u′)). Since T is one-to-one this implies
that S(u) = S(u′). Since S is on-to-one we have u = u′.

Thus, T ◦ S is one-to-one.

9. By Exercises 7 and 8 it follows that if S, t are isomor-
phisms then T ◦ S is a bijective function. By Exercise 5
of Section (2.1), T ◦ S is a linear transformation. Thus,
T ◦ S is an isomorphism.
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2.2. Range and Kernel of a Linear Transformation 21

10. Let BV = (v1, . . . ,vn) be a basis of V and set
wj = T (vj). Since T is injective and BV is linearly
independent BW = (w1, . . . ,wn) is linearly indepen-
dent by Theorem (2.11). Since V and W are isomor-
phic, dim(W ) = dim(V ) = n so that by the half is
good enough theorem, BW is a basis for W. Now there
exists a unique linear transformation S : W → V such
S(wj) = vj . Note that S ◦ T is a linear operator on V

such that (S ◦ T )(vj) = vj for all j. It then follows that
S ◦ T = IV and hence S = T−1. This proves that T−1 is
a linear transformation.

Alternative proof (applies even when V is infinite dimen-
sional): Assume w1,w2 ∈ W. We need to show that
T−1(w1+w2) = T−1(w1)+T (w2). Set v1 = T−1(w1)

and v2 = T−1(w2). Just as a reminder, vi, i = 1, 2 is the
unique element of V such that T (vi) = wi. Since T is
linear, T (v1+v2) = T (v1)+T (v2) = w1+w2. There-
fore T−1(w1 +w2) = v1 +v2 = T−1(w1)+T−1(w2).

Now assume that w ∈ W and c ∈ F. We need to show
that T−1(cw) = cT−1(w). Set v = T−1(w). Since T is
linear T (cv) = cT (v) = cw. We may therefore conclude
that T−1(cw) = cv = cT−1(w).

11. Let BV = (v1, . . . ,vn) be a basis for V. We know
that R(T ) = Span(T (v1), . . . , T (vn)). Now let BW =

(w1, . . . ,wm) be a basis for W. By the exchange theo-
rem, dim(V ) = n ≥ m = dim(W ).

12. Let BV = (v1, . . . ,vn) be a basis for V and BW =

(w1, . . . ,wm) be a basis for W. Since T is injective by
Theorem (2.11), T (BV ) = (T (v1), . . . , T (vn)) is lin-
early independent. By the exchange theorem, dim(V ) =

n ≤ m = dim(W ).

13. Let BW = (w1, . . . ,wm) be a basis for W. Since T

is surjective, for each i = 1, . . . ,m there exists a vector
vi such that T (vi) = wi. By Theorem (2.6) there exists
a unique linear transformation S : W → V such that
S(wi) = vi. Now T ◦ S : W → W is linear transforma-
tion and (T ◦ S)(wi) = T (S(wi)) = T (vi) = wi. Since
T ◦ S is a linear transformation and the identity when re-
stricted to a basis of W it follows that T ◦S = IW . (Note:

If S is not one-to-one then there will be other choices of
(v1, . . . ,vm) and therefore T will not be unique).

14. If dim(V ) = dim(W ) then T is an isomorphism by
the half is good enough theorem for linear transformations
and then T has a unique inverse (as a map) which is linear
by Exercise 10. Therefore by Exercise 12 we may assume
that dim(V ) < dim(W ).

Let BV = (v1, . . . ,vn) be a basis of V. Set wi =

T (vi), i = 1, . . . , n. Since T is one-to-one the sequence
(w1, . . . ,wn) is linearly independent. We can then ex-
tend (w1, . . . ,wn) to a basis (w1, . . . ,wm) for W. Now
there exists a unique linear transformation S : W → V

such that S(wi) = vi for i ≤ n and S(wi) = 0V for
i > n.

S ◦ T : V → V is a linear transformation. Moreover,
(S ◦ T )(vi) = S(T (vi)) = S(wi) = vi. It then follows
that S ◦ T = IV .

15. To show R is well-defined we need to prove if
T1(v) = T1(v

′) then T2(v) = T2(v
′). If T1(v) = T1(v

′)

then T (v− v′) = 0, that is, v− v′ ∈ Ker(T1). Since by
hypothesis, Ker(T1) = Ker(T2),v − v′ ∈ Ker(T2).

Consequently, T2(v − v′) = 0. It then follows that
T2(v) − T2(v

′) = 0 and therefore T2(v) = T2(v
′) as

desired.

Now suppose u1,u2 ∈ R(T1) and c1, c2 are scalars. We
need to show that S(c1u1+c2u2) = c1S(u1)+c2S(u2).

Toward that end, let v1,v2 ∈ V such that T1(v1) =

u1, T1(v2) = u2. Then T1(c1v1 + c2v2) = c1T1(v1) +

c2T1(v2) = c1u1 + c2u2. Therefore S(c1u1 + c2u2) =

T2(c1v1 + c2v2). Since T2 is linear, T2(c1v1 + c2v2) =

c1T2(v1) + c2T2(v2) = c1S(T1(v1)) + c2S(T1(v2)) =

c1S(u1) + c2S(u2).

16. Suppose first that Ker(T ) = {0}. Then T is injec-
tive and by the half is good enough theorem an isomor-
phism. Since the composition of injective functions is in-
jective, T k is also injective for all k ∈ N. In particular, Tn

and Tn+1 and consequently, Ker(Tn) = Ker(Tn+1) =

{0}. Moreover, Tn and Tn+1 are surjective and therefore
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22 Chapter 2. Linear Transformations

Range(Tn) = Range(Tn+1) = V. Therefore we may
assume that T is not injective.

Let m be a natural number and suppose v ∈ Ket(Tm).

Then Tm+1(v) = T (Tm(v)) = T (0) = 0.

Thus, Ker(Tm) ⊂ Ker(Tm+1). Next, assume w ∈
Range(Tm+1). Then there is a vector x ∈ V such that
w = Tm+1(x) = Tm(T (x)) ∈ Range(Tm). Thus,
Range(Tm+1) ⊂ Range(Tm).

It follows that nullity(Tm+1) ≥ nullity(Tm) and
rank(Tm+1) ≤ rank(Tm). Consider the sequence of
numbers (nullity(T ), nullity(T 2), . . . , nullity(Tn)).

Each is a natural number between 1 and n. If they are
all distinct they are then decreasing and we must have
nullity(Tn) = n, that is, Tn is the zero map. But then
Tn+1 is also the zero map and in this case Tn = Tn+1.

In the case that they are not all distinct we must have
some m < n such that nullity(Tm) = nullity(Tm+1),

so that Ker(Tm) = Ker(Tm+1). It then follows that
Ker(T k) = Ker(Tm) for all k ≥ m. In particular,
Ker(Tm) = Ker(Tn) = Ker(Tn+1). By Theorem
(2.9) it then follows that rank(Tn) = rank(Tn+1).

Since Range(Tn+1) ⊂ Range(Tn) we conclude that
Range(Tn+1) = Range(Tn).

17. Since dim(Range(Tn)) + dim(Ker(Tn)) =

dim(V ) it suffices to prove that Range(Tn) ∩
Ker(Tn) = {0}. From the proof of Exercise 16,
Ker(T k) = Ker(Tn) and Range(T k) = Range(Tn)

for all k ≥ n. Set S = Tn. It then follows that
Ker(S2) = Ker(S) and Range(S2) = Range(S). So,
assume that v ∈ Ker(S) ∩ Range(S). Then v = S(w)

for some w ∈ V. Now S2(w) = S(v) = 0 since v ∈
Ker(S). Thus, w ∈ Ker(S2), whence w ∈ Ker(S).

Thus, v = S(w) = 0 as required.

18. This follows immediately from Theorem (2.7) and
the fact, established in the proof of Exercise 16 that
Range(T 2) ⊂ Range(T ) and Ker(T ) ⊂ Ker(T 2).

19. a) Since TS = 0V→V it follows that Range(S) ⊂
Ker(T ) from which we conclude that rank(S) ≤
nullity(T ) = n− k.

b) Let (v1, . . . ,vn−k) be a basis for Ker(T ) and extend
to a basis (v1, . . . ,vn) of V . There exists a unique op-
erator S such that S(vi) = vi if 1 ≤ i ≤ n − k and
S(vi) = 0 if i > n − k. Then Range(S) = Ker(T ) so
that rank(S) = n− k and TS = 0V→V .

20. a) Since ST = 0V→V it follows that Range(T ) ⊂
Ker(S). Consequently, nullity(S) = dim(Ker(S)) ≥
dim(Range(T )) = rank(T ) = k. It then follows that
rank(S) ≤ n− k.

b) Let (v1, . . . ,vk) be a basis for Range(T ) and extend to
a basis (v1, . . . ,vn). Let S be the unique linear operator
such that S(vi) = 0 if 1 ≤ i ≤ k and S(vi) = vi if
i > k. Then Range(S) = Span(vk+1, . . . ,vn) so that
rank(S) = n − k. Since Range(T ) ⊂ Ker(S), ST =

0V→V .

21. Let dim(V ) = n. Since T 2 = 0V→V it follows
that Range(T ) ⊂ Ker(T ) whence rank(T ) = k ≤
nullity(T ) = n − k. It then follows that 2k ≤ n so
that k ≤ n

2 .

22. Let T be the unique linear operator such that T (vi) =

vi+m if 1 ≤ i ≤ m and T (vi) = 0 if m+ 1 ≤ i ≤ n.

2.3. Correspondence and
Isomorphism Theorems

1. By the Theorem (2.19) we have

V/W = (X1 +W )/W ∼= X1/(X1 ∩W )

V/W = (X2 +W )/W ∼= X2/(X2 ∩W )

Thus, X1/(X1 ∩W ) ∼= X2/(X2 ∩W ).

2. If V = X1⊕W then by Theorem (2.19) V/W = (X1+

W )/W ∼= X1/(X1 ∩ W ) = X1 since X1 ∩ W = {0}.
Similarly, V/W ∼= X2. Thus, X1

∼= X2.
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2.4. Matrix of a Linear Transformation 23

3. Since f is not the zero map, by Theorem (2.17) it fol-
lows that V/Ker(f) ∼= Range(f). Since f is not the zero
map, f must be surjective, that is, Range(f) = F.

4. Let u ∈ U. Then T (u) = u which implies that S(u) =
(T − IV )(u) = 0.

Now assume that v ∈ V is arbitrary. Since T (v + U) =

v+U it follows that S(v) = (T − IV )(v) = T (v)−v ∈
U. Then S2(v) = S(S(v)) = 0.

5 a) Assume T (v) = v. Then (S + IV )(v) = S(v) +

IV (v) = S(v) + v = v and therefore S(v) = . Con-
versely, if v ∈ Ker(S) then T (v) = (S + IV )(v) =

S(v) + IV (v) = 0+ v = v.

b) Let v ∈ V. Then

T (v)− v = T (v)− IV (v) = (T − IV )(v) = S(v).

Since S2 is the zero map, S(v) ∈ Ker(S) = U. There-
fore T (v) − v ∈ U which is equivalent to T (v + U) =

v + U.

6. Define a map T : U ⊕ V → (U/X)⊕ (V/Y ) by

T (u,v) = (u+X,v + Y ).

This map is surjective and has kernel X⊕Y. By Theorem
(2.17 (U ⊕ V )/(X ⊕ Y ) is isomorphic to U/X ⊕ V.

7 a.) Need to show that Γ is closed under addition and
scalar multiplication. Suppose v,w ∈ V. Then (v, T (v))

and (w, T (w)) are two typical elements of Γ. Since T is
linear

(v, T (v)) + (w + T (w)) = (v +w, T (v) + T (w)) =

(v +w, T (v +w)).

b) The subspace V1 = {(v,0)|v ∈ V } is a complement
to Γ in V ⊕ V and isomorphic to V. It then follows from
Theorem (2.19) that

V/Γ = (V1 + Γ)/Γ ∼= V1/(V1 ∩ Γ) = V1

the last equality since V1 ∩ Γ = {0}.

8. Since U + W is a subspace of V, (U + W )/W is a
subspace of V/W. By hypothesis, dim(V/W ) = n and
therefore dim((U +W )/W ) ≤ n.

By Theorem (2.19)

(U +W )/W ∼= U/(U ∩W ).

We therefore conclude that dim(U/(U ∩W ) ≤ n.

Now by Theorem (2.18)

(V/(U ∩W ))/(U/(U ∩W ) ∼= V/U.

Thus, dim(V/(U ∩W ))/(U/(U ∩W ) = dim(V/U) =

m. It now follows that dim(V/(V ∩W )) ≤ dim(U/(U ∩
W )) + dim(V/U) ≤ m+ n.

2.4. Matrix of a Linear
Transformation

1. Assume T is onto. It follows from Exercise
13 of Section (2.1) that Span(T (v1), . . . , T (vn)) =

W. By Exercise 5 of Section (1.8) it follows that
Span([T (v1)]BW

, . . . , [T (vn)]BW
) = Fm. However, the

coordinate vectors [T (vj)]BW
, j = 1, . . . , n are just the

columns of A.

Conversely, assume the columns of A span Fm. Then
([T (v1)]BW

, . . . , [T (vn)]BW
) spans Fm. By Exericise 1

it follows that (T (v1), . . . , T (vn)) spans W .

2. Assume T is injective. Then by Theorem (2.11)
(T (v1), . . . , T (vn)) is linearly independent. Then
by Theorem (1.30) ([T (v1)]BW

, . . . , [T (vn)]BW
)

is linearly independent in Fn. However,
([T (v1)]BW

, . . . , [T (vn)]BW
) is the sequence of columns

of the matrix A.

Conversely, assume that the sequence of columns
of the matrix A is linearly independent in Fn.
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24 Chapter 2. Linear Transformations

By definition of the matrix A this means that
([T (v1)]BW

, . . . , [T (vn)]BW
) is linearly independent

in Fn. By Theorem (1.30) we can conclude that
(T (v1), . . . , T (vn)) is linearly independent in W. Finally,
since BV = (v1, . . . ,vn) is a basis for V , by Theorem
(2.11), it follows that T is injective.

3. The matrix A =

(
0 1

0 0

)
is non-zero but A2 = 02×2.

Let T be the operator on R2 such that with respect to the

standard basis (
(
1

0

)
,

(
0

1

)
) it has matrix A. Thus,

T (

(
x

y

)
) =

(
y

0

)
.

4. There are lots of examples. Here is one possible pair:

(A,B) = (

(
1 0

1 0

)
),

(
1 1

−1 −1

)
).

5. MT (S,S) =



2 2 1

1 1 0

1 0 0


 .

6. Let Sn be the standard basis of Fn and Sm be the stan-
dard basis of Fm. Set A = MT (Sn,Sm). Then for any
vector v ∈ Fn, T (v) = Av.

7. Let T ∈ L(Fn,Fm) such that A = MT (Sn,Sm).

Since the columns of A span Fm by Exercise 1 T is sur-
jective. By Exercise 13 of Section (2.2) there is an lin-
ear transformation S : Fm → Fn such that TS = IFm .

Let B = MS(Sm,Sn). It then follows that BA =

MIFm (Sm,Sm) = Im.

8. Let T ∈ L(Fn,Fm) such that A = MT (Sn,Sm).

Since the sequence of columns of A is linearly indepen-
dent, by Exercise 2 the operator T is injective. Then by
Exercise 14 of Section (2.2) there is linear transforma-
tion S : Fm → Fn such that TS = IFn . Set B =

MS(Sm,Sn). Then AB = MIFn (Sn,Sn) = In.

9. The reduced echelon form of A is



1 0 3 0

0 1 −2 0

0 0 0 1


 .

Since every row is non-zero the columns of A span Q3.

One such matrix is




4 −2 −1

−5 3 2

0 0 0

2 −1 −1


.

10. The reduced echelon form of A is




1 0 0

0 1 0

0 0 1

0 0 0


 .

Since the columns of this matrix are linearly independent
the columns of A are linearly independent.

One such matrix is




2 −1 −2 0

−1 0 1 0

0 −1 1 0


 .

11. Since A = MT (BV ,BW ) it follows that [T (v)]BW
=

A[v]BV
. Suppose v ∈ Ker(T ) so that T (v) = 0W .

Thus A[v]BV
= 0 from which we conclude that [v]BV

∈
null(A). On the other hand if [v]BV

∈ null(A) then
[T (v)]BW

= 0 from which we conclude that T (v) = 0W

and v ∈ Ker(T ).

2.5. The Algebra of L(V,W )

and Mmn(F)

1. Let A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)
. Then

AB =

(
2 1

1 1

)
, BA =

(
1 1

1 2

)
.

Now let (v1,v2) be linearly independent in V and xtend
to a basis B = (v1, . . . ,vn) for V. Let S be the linear
operator on V such that S(v1) = v1, S(v2) = v1 + v2

and for S(vi) = vi for 3 ≤ i ≤ n.

Let T be the linear operator on V such that T (v1) = v1+

v2, T (v2) = v2 and T (vi) = vi for 3 ≤ i ≤ n.

Then (ST )(v1) = S(T (v1)) = S(v1 + v2) = S(v1) +

S(v2) = v1 + (v1 + v2) = 2v1 + v2.

(TS)(v1) = T (S(v1)) = T (v1) = v1+v2 �= (ST )(v1).
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2. Let (v1,v2) be linearly independent and extend to a
basis B = (v1, . . . ,vn) for V. Let S be the operator on
V such that S(v1) = v1 + v2, S(v2) = v1 + v2 and
S(vi) = 0V for 3 ≤ i ≤ n.

Let T be the operator on V such that T (v1) = v1 −
v2, T (v2) = v1 − v2 and T (vi) = 0V for 3 ≤ i ≤ n.

If v ∈ B \ {v1,v2} then (ST )(v) = S(T (v)) = S(0) =

0. On the other hand

(ST )(v1) = S(T (v1)) = S(v1 − v2) =

S(v1)− S(v2) = (v1 + v2)− (v1 + v2) = 0.

(ST )(v2) = S(T (v2)) = S(v1 − v2) = 0.

3. Since 1a = a1 the identity of A is in CA(a) and so
CA(a) has an identity. We need to show that CA(a) is
closed under addition, multiplication and scalar multipli-
cation.

Suppose b, c ∈ CA(a). Then (b + c)a = ba + ca =

ab+ ac = a(b+ c). So b+ c ∈ CA(a).

We also have (bc)a = b(ca) = b(ac) = (ba)c =

(ab)c = a(bc) and so bc ∈ CA(a). Finally, if d is a
scalar we have (db)c = d(ba) = d(ab) = a(db).

4. We prove the only non-zero ideal in Mnn(F) is
Mnn(F). Suppose J is an ideal and A is a matrix with
entries aij is in J and A is not the zero matrix. Then
for some aij �= 0. Let Eii be the matrix with zeros in
all entries except the (i, i)−entry which is a 1. The ma-
trix EiiAEjj = aijEij is in J since J is an ideal. Since
aij �= 0 we can multiply by the reciprocal and therefore
Eij ∈ J.

Now let Pkl be the matrix which is obtained from the
identity matrix by exchanging the k and l columns (rows).
If B is an n × n matrix then PklB the matrix obtained
from B by exchanging the k and l rows and BPkl is
the matrix obtained from B by exchanging the k and l

columns. It then follows that PikEijPjl = Ekl is in J.

However, the matrices Ekl span Mnn(F) and it follows
that J = Mnn(F). Since Mnn(F) and L(V, V ) are iso-
morphic as algebras the only ideals in L(V, V ) are the
zero ideal and all of L(V, V ).

5. Clearly the sum of two upper triangular matrices is
upper triangular. Consider the product of two upper tri-
angular matrices A and B. The (i, j)−entry of AB is the
dot product of the ith row of A with the jth for of B:

(
0 . . . 0 aii . . . ain

)




b1j
...
bjj
0
...
0




.

If i > j then the product is zero and AB is upper triangu-
lar.

6. Unn(F) is a subspace. We need only need to show that
the diagonal elements of a product of a strict upper trian-
gular matrix and a triangular matrix are zero. Suppose A

is strictly upper triangular and B is upper triangular. Then
the (i, i)−entry of AB is

(
0 . . . 0 ai+1,i+1 . . . ain

)




b1j
...
bjj
0
...
0




= 0.

Similarly the diagonal entries of BA are zero.

7. Assume T ∈ L(V, V ) is not a unit. Then T is
not injective by the half is good enough theorem and
Ker(T ) �= {0}. Let v be a non-zero vector in Ker(T ).

Choose a basis (v1, . . . ,vn) and let S be the operator such
that S(vi) = v for all i. Then S is not the zero operator
but Range(S) = Span(v). It then follows that TS is the
zero operator.
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2.6. Invertible Transformations
and Matrices

1.




4 5 2

2 3 1

−1 −1 −1




2. S−1(a+ bx+ cx2) = (b− c) + (2a− b)x+ (−3a+

b+ c)x2.

3. Set wi = T (vi). Assume that (w1, . . . ,wn) is a basis
for W. Then there exists a unique linear transformation
S : W → V such that S(wi) = vi. Then ST (vi) =

vi and since ST is linear, ST = IV . Similarly, TS =

IW . So in this case T is an isomorphism. On the other
hand, assume T is an isomorphism. Then T is injective
and so (w1, . . . ,wn) is linearly independent. Also, T is
surjective. However, Range(T ) = Span(w1, . . . ,wn).

Thus, (w1, . . . ,wn) is a basis of W.

4. This follows from Exercise 3.

5. From Exercise 4 we need to count the number of bases
(v1,v2,v3) there are in F3

2. There are 7 non-zero vectors
and v1 can be any of these vectors. v2 can be any vector
except 0 and v1 and so there are 8 - 2 = 6 choices for v2.

Having chosen v1,v2 we can choose v3 to be any vector
not in Span(v1,v2) = {0,v1,v2,v1+v2}. So, there are
8 - 4 = 4 choices for v3. So the number of bases is

7× 6× 4 = 168.

6. From Exercise 4 we need to count the number of bases
(v1,v2,v3) there are in F3

3. There are 26 non-zero vec-
tors and v1 can be any of these vectors. v2 can be any
vector except 0 and ±v1 and so there are 27 - 3 = 24
choices for v2. Having chosen v1,v2 we can choose v3

to be any vector not in Span(v1,v2). There are 9 vectors
in span(v1,v2) and so there are 27 - 9 = 18 choices for
v3. So the number of bases is

26× 24× 18 = 11232 = 253313.

7. This is the same as Exercise 7 of Section (2.5).

8. Assume S, T are invertible operators on the space V.

Then

(ST )(T−1S−1) = S[T (T−1S−1)] =

S[(TT−1)S−1] = S[IV S
−1] = SS−1 = IV .

(T−1S−1)(ST ) = T−1[S−1(ST )] =

T−1[(S−1S)T ] = T−1[IV T ] = T−1T = IV .

9. By the distributive property, Ŝ is an operator on
L(V, V ). Let T ∈ L(V, V ). Then

Ŝ−1Ŝ(T ) = S−1(ST ) = (S−1S)T = IV T = T

ŜŜ−1T = S(S−1T ) = (SS−1)T = IV T = T.

So Ŝ is an invertible operator with inverse Ŝ−1.

10. IV − S)(IV + S + · · ·+ Sk−1) =

IV + S + · · ·+ Sk−1 − (S + · · ·+ Sk−1 + Sk) =

IV − Sk = IV .

A similar calculation gives

(IV + S + · · ·+ Sk−1)(IV − S) = IV .

11. Every operator T is similar to itself via the identity:
IV TI

−1
V = T. Therefore the relation is reflexive.

Assume the operators S and T are similar via Q, that is,
T = QSQ−1. Then S = Q−1TQ = Q−1T (Q−1)−1. So,
setting P = Q−1 we have S = PTP−1. The relation of
similarity is symmetric.

Assume S = QRQ−1 and T = PSP−1. Then
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2.6. Invertible Transformations and Matrices 27

T = P (QRQ−1)P−1 = (PQ)R(Q−1P−1) =

(PQ)R(PQ)−1

which implies that similarity is a transitive relation.

12. Suppose T2 = QT1Q
−1. Then

MT2
(B,B) = MQ(B,B)MT1

(B,B)MQ−1(B,B).

Set A = MQ(B,B) then MQ−1(B,B) = A−1. Thus,

MT2(B,B) = AMT1(B,B)A−1

and so the matrices are similar.

13. We are assuming there is an invertible matrix A such
that MT2(B,B) = AMT1(B,B)A−1. Let Q be the oper-
ator on V such that the matrix of Q with respect to B is
A :

MQ(B,B) = A.

Let T ′ = QT1Q
−1. Then

MT ′(B,B) = MQ(B,B)MT1
(B,B)MQ−1(B,B)

= MQ(B,B)MT1
(B,B)MQ(B,B)−1

AMT1
(B,B)A−1 = MT2

(B,B)

It follows that T ′ = T2 and since T ′ = QT1Q
−1, T2 and

T1 are similar.

14. MT2
(B,B) is similar to MT2

(B′,B′). Since
MT1

(B,B) is similar to MT2
(B′,B′) by hypothesis, by

transitivity, MT1
(B,B) and BT2

(B,B) are similar. Now
by Exercise 13, T1 and T2 are similar operators.
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Chapter 3

Polynomials

3.1. The Algebra of
Polynomials

1. x2 + 1.

2. Assume F (x), G(x) are in J. Then there are
ai(x), bi(X), i = 1, 2 such that

F (x) = a1(x)f(x) + b1(x)g(x),

G(x) = a2(x)f(x) + b2(x)g(x).

Then

F (x) +G(x) =

[a1(x) + a2(x)]f(x) + [b1(x) + b2(x)]g(x) ∈ J

3. Assume F (x) ∈ J and c(x) ∈ F[x]. We need to show
c(x)F (x) ∈ J. Now there are a(x), b(x) ∈ F[x] such that
F (x) = a(x)f(x) + b(x)g(x). Then

c(x)F (x) = [c(x)a(x)]f(x) + [c(x)b(x)]g(x)

4. Suppose d(x) is monic and has least degree in J.

Want to show that every element of J is a multiple of
d(x). Let f(x) ∈ J. Apply the division algorithm to write
f(x) = q(x)d(x) + r(x) where either r(x) is the zero
polynomial or deg(r(x)) < deg(d(x)). Suppose to the

contrary that r(x) �= 0. Then r(x) = f(x) − q(x)d(x).

By the definition of an ideal −q(x)d(x) ∈ J. Since
f(x),−q(x)d(x) ∈ J we get r(x) = f(x)− q(x)d(x) ∈
J. However deg(r(x)) < deg(d(x)) which contradicts
the minimality of the degree of d(x). So, r(x) is the zero
polynomial and d(x) divides f(x).

Now suppose d(x), d′(x) are both minimal degree and
monic. Then d(x) divides d′(x) and d′(x) divides d(x).

This implies there is a scalar c ∈ F such that d′(x) =

cd(x). Since both are monic, c = 1 and they are equal.

5. Let a(x) and b(x) be polynomials such that a(x)f(x)+
b(x)g(x) = d(x). We then have

a(x)f ′(x)d(x) + b(x)g′(x)d(x) = d(x)

a(x)f ′(x) + b(x)g′(x) = 1

We therefore conclude that f ′(x) and g′(x) are relatively
prime.

6. Write f(x) = f ′(x)d(x), g(x) = g′(x)d(x). Then
f ′, g′ are relatively prime. Let l(x) be the least common
multiple of f(x) and g(x).

Now f(x)g(x)
d(x) = f ′(x)g′(x)d(x) is divisible by f(x) and

g(x) and therefore l(x) divides f(x)g(x)
d(x) . On the other

hand, let l(x) = l′(x)d(x). Since f(x) = f ′(x)d(x) di-
vides l(x) = l′(x)d(x) we conclude that f ′(x) divides
l′(x). Similarly, g′(x) divides l′(x). Since f ′(x)g′(x)
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are relatively prime it then follows that f ′(x)g′(x) di-
vides l′(x). Consequently, f(x)g(x)

d(x) = f ′(x)g′(x) divides

l′(x)d(x) = l(x). It now follows that f(x)g(x)
d(x) is a scalar

multiple of l(x).

7. If l(x) and l′(x) are both lcms of f(x), g(x) then
l(x)|l′(x) and l′(x)|l(x) so that l′(x) = cl(x) for some
c ∈ F. Since both are monic, c = 1 and l(x) = l′(x).

8. Without loss of generality we can assume that f(x) is
monic. Let d(x) be the gcd of f(x) and g(x). Since f(x)

is irreducible and d(x) divides f(x) either d(x) = 1 or
d(x) = f(x). However, in the latter case, f(x) = d(x)

divides g(x), contrary to the hypothesis. Thus, d(x) = 1

and f(x), g(x) are relatively prime.

9. This follows from Exercise 6.

10. Let d(x) be the greatest common divisor of f(x)

and g(x) in F[x] and assume, to the contrary that d(x) �=
g(x). Write f(x) = f ′(x), g(x) = g′(x)d(x). As in the
proof of Exercise 6 there are a(x), b(x) ∈ F[x] such that
a(x)f ′(x) + b(x)g′(x) = 1. Since F ⊂ K it follows that
f ′(x) and g′(x) are relatively prime in K[x]. But then the
gcd of f(x) and g(x) in K[x] is d(x) contrary to the as-
sumption that g(x) divides f(x) in K[x]. We therefore
have a contradiction and consequently, d(x) = g(x) as
required.

11. A polynomial g(x) dividesf(x) if and only if g(x)
has a factorization cp1(x)

f1 . . . pt(x)
ft where c ∈ F and

fi are in N ∪ {0} and fi ≤ ei. There are then ei + 1

choices for fi and hence (e1+1)×· · ·× (et+1) choices
for (f1, . . . , ft). For any such t there is a unique c such
that the polynomial is monic.

3.2. Roots of Polynomials

1. Since non-real, complex roots of a real polynomial
come in conjugate pairs the number of non-real, complex
roots of a real polynomial is always even. Therefore, if
the degree of a real polynomial is 2n+1, an odd number,
there must be a real root.

2. x4 + 5x2 + 4. Another, which is irreducible over the
rational numbers is x4 + 2x2 + 2.

3. Note that complex conjugation satisfies

z + w = z + w, zw = z w (3.1)

If λ is a root of f(x) then

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0 (3.2)

Taking the complex conjugate of both sides of (3.2) and
using (3.1) we obtain

λn + an−1λn−1 + · · ·+ a1λ+ a0 = 0

λn + an−1λn−1 + · · ·+ a1λ̄+ a0 = 0

λ
n
+ an−1λ

n−1
+ · · ·+ a1λ+ a0 = 0.

Thus, λ is a root of f̄(x).

4. x4 − 6x3 + 15x−18x+ 10.

5. If 3 + 4i is a root of f(x) then so is 3 + 4i = 3 − 4i.

Then (x − [3 + 4i])(x − [3 − 4i]) = x2 − 3x + 25 is a
factor of f(x). Likewise x2 − 6x+25 is a factor of g(x).

6. Let n = max{deg(f(x), g(x)}. Then f(x), g(x) ∈
F(n)[x] and we can write f(x) =

∑n
i=0 aix

i, g(x) =∑n
i=0 bix

i. Then f(x) + g(x) =
∑n

i=0(ai + bi)x
i. By

the definition of D we have

D(f(x)) =

n∑
i=1

iaix
i−1, D(g(x)) =

n∑
i=1

ibix
i−1.

Adding D(f(x)) +D(g(x)) we get

D(f(x)) +D(g(x)) =

n∑
i=1

(iai + ibi)x
i−1 =
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n∑
i=1

i(ai + bi)x
i−1 = D(f(x) + g(x)).

7. Assume f(x) =
∑n

i=0 aix
i. Then cf(x) =∑n

i=0(cai)x
i. We then have

D(cf(x)) =
n∑

i=1

i(cai)x
i−1 =

n∑
i=1

c(iai)x
i−1 = c

n∑
i=1

iaix
i−1 = cD(f(x)).

8. Let k, l be natural numbers. We first prove that
D(xk+l) = D(xk)xl + xkD(xl). By the definition of
D we have

D(xk)xl + xkD(xl) = kxk−1xl + xk(lxl−1) =

kxk+l−1 + lxk+l−1 = (k + l)xk+l−1 =

D(xk+l) = D(xk · xl).

We next prove if g(x) ∈ F[x] and k is a natural num-
ber then D(xkg(x)) = D(xk)g(x) + xkD(g(x)). Write
g(x) =

∑n
i=0 bix

i. Then xkg(x) =
∑m

i=0 bi(x
k ·xi). By

Exercises 6 and 7 we have

D(
m∑
i=0

bi(x
k · xi) =

n∑
i=0

biD(xk · xi).

By Exercise 7 we have

n∑
i=0

biD(xk · xi) =

n∑
i=0

bi[D(xk)xi + xkD(xi)] =

n∑
i=0

biD(xk) +

n∑
i=0

bix
kD(xi) =

D(xk)

n∑
i=0

bix
i + xk

n∑
i=0

biD(xi) =

D(xk)g(x) + xkD(g(x)).

Now write f(x) =
∑m

j=0 ajx
j . Then f(x)g(x) =∑m

j=0 ajx
jg(x). By Exercises 6 and 7 we have

D(

m∑
j=0

ajx
jg(x)) =

m∑
j=0

ajD(xjg(x)).

Then by what we showed immediately above we have

m∑
j=0

ajD(xjg(x)) =

m∑
j=0

aj [D(xj)g(x) + xjD(g(x))] =

m∑
j=0

ajD(xj)g(x) +

m∑
j=0

ajx
jD(g(x)) =

[

m∑
j=0

(jaj)x
j−1]g(x) +

m∑
j=0

ajx
jD(g(x)) =

D(f(x))g(x) + f(x)D(g(x)).

9. Suppose α is a root of multiplicity at least two. Then
(x − α)2 divides f(x). Then we can write f(x) = (x −
α)2g(x). Then D(f(x)) = 2(x−α)g(x)+(x−α)2g′(x).

Consequently (x− α) is a factor of D(f(x)).

On the other hand, suppose f(x) has n distinct roots,
α1, . . . , αn. Then f(x) = (x− α1) . . . (x− αn). Then

D(f(x)) =

n∑
i=1

f(x)

(x− αi)

Evaluating D(f(x)) at αi we obtain (αi − α1) . . . (αi −
αi−1)(αi−αi+1) . . . (αi−αn) �= 0. Therefore (x−αi) is
not a factor of D(f(x)) and f(x), D(f(x)) are relatively
prime.

10. If i �= j then (x − αi) is a factor of Fj(x) and
hence fj(x) and therefore fj(αi) = 0. On the other hand,
fj(αj) =

Fj(αj)
Fj(αj)

= 1. Now suppose

n∑
ij=1

cjfj(x) = 0

Evaluating at αi we obtain
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32 Chapter 3. Polynomials

∑
j=1

cjfj(αi) = cifi(αi) = ci.

Thus, ci = 0 for all i and B = (f1, . . . , fn) is linearly
independent in Fn−1[x]. Since dim(Fn−1[x]) = n, B is a
basis.

11. Set f(x) =
∑n

i=j βjfj(x). f(x) satisfies the con-
ditions. Suppose g(x) does also. Then αj is a root of
f(x) − g(x) for all j. Since f(x) − g(x) ∈ Fn−1[x] if
f(x) − g(x) �= 0 then it has at most n − 1 roots. There-
fore f(x)− g(x) = 0 and g(x) = f(x).

12. If g(x) ∈ Fn−1[x] and g(αj) = βj then g(x) =∑n
j=1 βjfj(x) by Exercise 8. Since the coefficient of

fj(x) is g(αj) we conclude that

[g(x)]B =



g(α1)

...
g(αn)




13. The coordinate vector of the constant function 1 is

1
...
1


 . The coordinate vector of xk is

[xk]B =




αk
1

αk
2
...
αk
n


 .

It follows that the change of basis matrix from S to B is

MIFn−1[x]
(S,B) =




1 α1 α2
2 . . . αn−1

1

1 α2 α2
2 . . . αn−1

2
...

...
... . . .

...
1 αn α2

n . . . αn−1
n




When α1, . . . , αn are distinct this matrix is invertible.
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Chapter 4

Theory of a Single Linear Operator

4.1. Invariant Subspaces of an
Operator

1. T (



x1

x2

x3


) =




x1

x2

x1 + x2


 .

2. Let (u1, . . . ,uk) be a basis for U. Extend this to a
basis (u1, . . . ,un) of V. Let T be the operator such that
T (ui) = un for all i.

3. x2 − 3x+ 2.

4. x3 − 2x2 − x+ 2.

5. S(T (v)) = (ST )(v) = (TS)(v) = T (S(v)) =

T (λv) = λT (v).

6. Let T̂ : U → U be defined by T̂ (u) = T (u). Since
T is invertible on V , in particular, T is injective. Then
T̂ is injective. Since V is finite dimensional it follows
that U is finite dimensional. Consequently by the half is
good enough theorem T̂ is surjective. Now let u ∈ U

be arbitrary. By what we have shown there is a u′ ∈ U

such that T (u′) = u. Then T−1(u) = T−1(T (u′)) =

(T−1T )(u′) = IV (u
′) = u′ ∈ U. Thus, U is T−1 invari-

ant.

7. Suppose v ∈ E1 ∩ E−1. Then T (v) = v and T (v) =

−v. Then v = −v or 2v = 0. Since 2 �= 0,v = 0. So
E1∩E−1 = {0}. So we need to show that V = E1+E−1.

Let v ∈ V be arbitrary. Set x = 1
2 (v + T (v)) and y =

1
2 (v − T (v)). We claim x ∈ E1,y ∈ E−1.

T (x) = T (
1

2
(v + T (v))) =

1

2
T (v + T (v))

=
1

2
(T (v) + T 2(v)) =

1

2
(T (v) + v) = x.

T (y) = T (
1

2
(v − T (v))) =

1

2
T (v − T (v))

=
1

2
(T (v)− T 2(v)) =

1

2
(T (v)− v) = −y.

Now v = x+ y ∈ E1 + E−1.

8. In addition to R3 and 0 the invariant subspaces are

Span(



1

1

1


) and {



x1

x2

x3


 |x1 + x2 + x3 = 0}.

9. The T−invariant subspaces are

{0}, Span(



1

0

0


), Span(



1

0

0


 ,



0

1

0


),R3.

10. This follows since for any polynomials f, g we have
f(T )+g(T ) = (f+g)(T ) and f(T )g(T ) = h(T ) where
h(x) = f(x)g(x).
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34 Chapter 4. Theory of a Single Linear Operator

11. Need to show that i) If f(x), g(x) ∈ Ann(T,v) then
f(x) + g(x) ∈ Ann(T,v); and ii) If f(x) ∈ Ann(T,v)

and h(x) ∈ F[x] then h(x)f(x) ∈ Ann(T,v).

i) [(f + g)(T )](v) = [f(T ) + g(T )](v) = f(T )(v) +

g(T )(v) = 0+ 0 = 0.

ii) [h(T )f(T )](v) = h(T )(f(T )(v)) = h(T )(0) = 0.

12. Let u ∈ U,w ∈ W. Then T (u+w) = T (u)+T (w).

By hypothesis, T (u) ∈ U and T (w) ∈ W and therefore
T (u) + T (w) ∈ U +W. Thus, U +W is T−invariant.

Suppose x ∈ U ∩W. Since x ∈ U and U is T−invariant
T (x) ∈ U. Similarly, T (x) ∈ W and hence T (x) ∈
U ∩W.

13. Need to show that i) If f(x), g(x) ∈ Ann(T ) then
f(x) + g(x) ∈ Ann(T ); and ii) If f(x) ∈ Ann(T ) and
h(x) ∈ F[x] then h(x)f(x) ∈ Ann(T ).

i) Let v be an arbitrary vector. We then have

[(f + g)(T )](v) = [f(T ) + g(T )](v) =

f(T )(v) + g(T )(v) = 0+ 0 = 0.

Since v is an arbitrary vector f + g ∈ Ann(T ).

ii) Let v be an arbitrary vector. Then

[h(T )f(T )](v) = h(T )(f(T )(v)) = h(T )(0) = 0.

Thus, h(x)f(x) ∈ Ann(T ).

14. Assume T has an eigenvector v with eigenvalue λ.

Then µT,v(x) = x − λ. Since µT (x)(v) = 0 it follows
by Remark (4.4) that (x− λ) divides µT (x).

15. Assume v is an eigenvector with eigenvalue λ. Then
T (v) = λv. We then have

[T (v)]B = [λv]B = λ[v]B.

On the other hand,

[T (v)]B = MT (B,B)[v]B.

Thus, we conclude that [v]B is an eigenvector of the ma-
trix MT (B,B) with eigenvalue λ.

Conversely, assume [v]B is an eigenvector of the matrix
MT (B,B) with eigenvalue λ. Then

MT (B,B)[v]B = λ[v]B = [λv]B.

On the other hand,

MT (B,B) = [T (v)]B.

Thus, we have

[T (v)]B = [λv]B.

It then follows that

T (v) = λv.

16. This is a consequence of the fact that f(A) =

Mf(T )(B,B).

17. Let f(x) ∈ F[x] and let T be an operator on
a finite dimensional vector space. Suppose f(S) =

0V→V . Then f(MS(B,B)) = 0nn by Exercise 16.
Then f(MS(B,B)tr) = 0nn. However, MS′(B,B) =

MS(B,B)tr and consequently, f(MS′(B,B)) = 0nn.

Then by Exercise 16, f(S′) = 0V→V . This implies that
µS′(x) divides µS(x). However, the argument can be re-
versed so that µS(x) divides µS′(x). Since both are monic
they are equal.

18. Since T (v) = λv,v = 1
λT (v). Then

T−1(v) = T−1(
1

λ
T (v)) =

1

λ
T−1(T (v))

=
1

λ
(T−1T )(v) =

1

λ
IV (v) =

1

λ
v.

19. This follows since v is an eigenvector of T k with
eigenvalue λk. Also, if v is an eigenvector for an operator
S with eigenvalue λ then v is an eigenvector for cS with
eigenvalue cλ. Finally, if v is an eigenvector for opera-
tors S1, S2 with respective eigenvalues λ1, λ2 then v is an
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4.2. Cyclic Operators 35

eigenvector of S1 + S2 with eigenvalue λ1 + λ2. Now if
f(x) = amxm + · · · + a1x + a0 the operators akT k has
v as an eigenvector with eigenvalue akλ

k. Then add.

20. Apply S−1TS to S−1(v):

(S−1TS)(S−1(v) = (S−1T )(S(S−1(v)) =

(S−1T )(IV (v) = (S−1T )(v) =

S−1(T (v)) = S−1(λv) = λS(v).

So we applied S−1TS to the vector S−1(v) and the result
is λS−1(v). Thus, S−1(v) is an eigenvector of S−1TS

with eigenvalue λ.

21. Note for any polynomial f(x) that f(ST )S =

Sf(TS) and f(TS)T = Tf(ST ).

Let f(x) = µST (x) and g(x) = µT (x). Then
f(ST ) = 0V→V . Then f(ST )S = 0V→V . By the above
Sf(TS) = 0V→V whence (TS)f(TS) = 0V→V . It then
follows that g(x) divides xf(x). In exactly the same way
f(x) divides xg(x). In particular, f(x) and g(x) have the
same non-zero roots.

4.2. Cyclic Operators

1a) T (z) =




1

−1

0


 , T 2(z) =




3

−4

−2


 , T 3(z) =




3

−3

−2


 .

The matrix



1 1 3

0 −1 −4

0 0 −2


 is invertible and therefore

(z, T (z), T 2(x)) is a basis for R3.

µT,z(x) = x3 − x2 + x− 1.

b) µT,u(x) = x− 1.

2. T (z) =




0

1

0

0


 , T 2(z) =




0

0

1

0


 , T 3(z) =




0

0

0

1


 .

So 〈T, z〉 contains the standard basis of R4 and there-

fore 〈T, z〉 = R4. Now T 4(z) =




−4

0

−5

0


 and µT,z(x) =

x4 + 5x2 + 4 = (x2 + 1)(x2 + 4).

3. Let z ∈ V be any non-zero vector. Then 〈T, z〉
is a T−invariant subspace which is not {0}. Therefore
〈T, z〉 = V and T is a cyclic operator.

4. There are lots of such operators. Here is a simple one

T (




x1

x2

x3

x4


 =




x1

2x2

3x3

4x4


 .

If z =




1

1

1

1


 then 〈T, z〉 = R4.

5. Since T is cyclic, µT (x) has degree 3. Suppose µT (x)

has one real root so that µT (x) = (x − λ)g(x) where
g(x) is a real irreducible quadratic. Let x be a vector
such that R3 = 〈T,x〉 Then the T−invariant subspaces
are R3, {0}, 〈T, (T − λI)x〉 and 〈T, g(T )(x)〉.

We can suppose µT (x) has three real roots. If there is
only one distinct root, say λ so that µT (x) = (x−λ)3. In
this case there are four T−invariant subspaces.

Assume µT (x) = (x−α)2(x−β), α �= β, then there are
six T−invariant subspaces.

Assume µT (x) = (x−α)(x−β)(x−γ), distinct. In this
case there are eight T−invariant subspaces

6. Let T have the following matrix with respect to the
standard basis
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36 Chapter 4. Theory of a Single Linear Operator



1 1 0

0 1 1

0 0 1


 .

Here is another:



1 0 0

0 0 1

0 −1 0




7. Let T have the following matrix with respect to the
standard basis



2 0 0

0 1 1

0 0 1




8. Because T is cyclic, µT (x) has degree 4.

The number of T−invariant subspaces can be computed
from a factorization of µT (x). The possibilities are:

p(x)2 where p(x) is a real quadratic irreducible. There
are three T−invariant subspaces in this case.

p(x)(x − α)2 where p(x) is a real irreducible quadratic
and α ∈ R. There are six T−invariant subspaces in this
case.

p(x)(x − α)(x − β) where p(x) is a real irreducible
quadratic and α �= β are real numbers. There are eight
T−invariant subspaces in this case.

(x−α)4, α ∈ R. There are five T−invariant subspaces in
this case.

(x − α)3(x − β) where α �= β are real numbers. There
are eight T−invariant subspaces in this case.

(x − α)2(x − β)2 where α �= β are real numbers. There
are nine T−invariant subspaces in this case.

(x−α)2(x−β)(x−γ) where α, β, γ are distinct real num-
bers. where α �= β are real numbers. There are twelve
T−invariant subspaces in this case.

(x−α)(x−β)(x−γ)(x−δ) where α, β, γ, δ are distinct
real numbers. where α �= β are real numbers. There are
sixteen T−invariant subspaces in this case.

9. Let T be the operator on R4 which has the following
matrix with respect to the standard basis:




0 1 0 0

−1 0 0 0

0 1 0 1

0 0 −1 0


 .

10. Let T be the operator on R4 which has the following
matrix with respect to the standard basis:




1 1 0 0

0 1 0 0

0 0 2 0

0 0 0 3




11. Let T be the operator on R4 which has the following
matrix with respect to the standard basis:




1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4




12. Set v0 = v and vi+1 = T i(v) for 1 ≤ i < n. By
our hypothesis, (v0, . . . ,vn−1) is a basis for V. Assume
S(v) = a0v0 + . . . an−1vn−1. Set f(x) = a0 + a1x +

· · · + an−1x
n−1 ∈ Fn−1[x]. We claim that S = f(T ).

Since S and f(T ) are linear operators it suffices to show
that S(vi) = f(T )(vi) for i = 0, . . . , n− 1.

We have constructed f(x) such that f(T )(v) =

f(T )(v0) = S(v). Consider f(T )(vi) for 1 ≤ i ≤ n−1.

f(T )(vi) = f(T )(T i(v)) = T if(T )(v) = T iS(v) =

ST i(v) = S(vi).
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4.3. Maximal Vectors

1. a) µT,e1(x) = x2 + 2x+ 2,

µT,e2
(x) = x3 − 2x− 4,

µT,e3
(x) = x3 − 2x− 4.

b) µT (x) = x3 − 2x− 4.

c) e2, e3 are maximal vectors.

2. µT (x) = (x − 2)2(x − 1). e2 and e3 are maximal
vectors for T.

3. µT (x) = x4−x3−x2−x−2 = (x−2)(x3+x2+x+1).

e1 is a maximal vector.

4. Clearly (v1) is linearly independent since an eigenvec-
tor is non-zero. Assume we have shown that (v1, . . . ,vj)

is linearly independent with j < k. We show that
(v1, . . . ,vj+1) is linearly independent. Suppose that

c1v1 + · · ·+ cj+1vj+1 = 0 (4.1)

Apply T to get

c1T (v1) + · · ·+ cj+1T (vj+1) = 0

Using the fact that T (vi) = αivi we get

c1α1v1 + · · ·+ cjαjvj + cj+1|αj+1vj+1 (4.2)

Now multiply (4.1) by αj+1 and subtract it from (4.2) to
get

c1(α1 − αj+1)v1 + · · ·+ cj(αj − αj+1) = 0 (4.3)

Thus, we obtain a dependence relation on (v1, . . . ,vj).

However, (v1, . . . ,vj) is linearly independent and there-
fore

c1(α1 − αj+1) = · · · = cj(αj − αj+1) = 0.

Since the αi are distinct, for all i < j+1, αi−αj+1 �= 0.

Therefore

c1 = c2 = · · · = cj = 0.

In then follows that the dependence relation in (4.1) is

cj+1vj+1 = 0

Since vj+1 is non-zero, cj+1 = 0.

5. Since x2+1, x+1, x−2 are relatively prime it follows
that (x2 + 1)(x+ 1)(x− 2) divides µT (x). Since T is an
operator on R4 the degree of µT (x) is at most four. We
can then conclude that µT (x) = (x2 + 1)(x+ 1)(x− 2).

Set v = v1 + v2 + v3. Since µT,v1(x), µT,v2(x) and
µT,v3

(x) are relatively prime, µT,v(x) is the product
µT,v1

(x)µT,v2
(x)µT,v3

(x) = (x2 + 1)(x+ 1)(x− 2) =

µT (x). Thus, v is a maximal vector.

6. 〈T,v1〉 = Span(v1,v2) and every non-zero vector v
in 〈T,v1〉 satisfies µT,v(x) = x2 + 1 since x2 + 1 is irre-
ducible. v3 is an eigenvector with eigenvalue -1 and v4 is
an eigenvector with eigenvalue 1. If w = w1 +w2 +w3

with w1,w2,w3 nonzero and w1 ∈ Span(v1,v2),w2 ∈
Span(v3) and w3 ∈ Span(v4) then µT,w(x) is divisible
by (x2 + 1)(x + 1)(x − 1) and is therefore a maximal
vector. On the other hand, if w1,w2 are non-zero but w3

is zero then µT,w(x) = (x2 + 1)(x + 1). If w1,w3 are
non-zero but w2 = 0 then µT,w(x) = (x2+1)(x− 1). If
w2,w3 �= 0,w1 = 0 then µT,w(x) = (x+ 1)(x− 1).

7. If v �= 0 then µT,v(x) is a non-constant polynomial
and divides µT (x) which is irreducible. Then µT,v(x) =

µT (x) and v is a maximal vector.

8. Since µT (x) has degree 5 and dim(F5
5) = 5 the op-

erator T is cyclic. Note that x5 − x = x(x − 1)(x −
2)(x−3)(x−4). Set fi(x) = x5−x

x−i where i = 0, 1, 2, 3, 4

and let v be a maximal vector. Set vi = fi(T )v. Then
vi is an eigenvector with eigenvalue i, i = 0, 1, 2, 3, 4.

Since these eigenvalues are distinct, (v1, . . . ,v5) is inde-
pendent by Exercise 4. By the half is good enough theo-
rem (v1, . . . ,v5) is a basis. A vector c1v1 + · · · + c5v5
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38 Chapter 4. Theory of a Single Linear Operator

is a maximal vector if and only if ci �= 0 for all i. Thus,
there are 45 maximal vectors.

4.4. Indecomposable Linear
Operators

1. This operator is decomposable since it is not cyclic. It
has minimal polynomial x2 + 2x+ 1 = (x+ 1)2.

2. This operator is indecomposable. µT,e3(x) = x3 +

3x2+3x+1 = (x+1)2. So, the operator is cyclic and the
minimum polynomial is a power of the irreducible poly-
nomial x+ 1.

3. This operator is indecomposable. µT,e1
(x) = x3 −

6x2 + 12x− 8 = (x− 2)3.

4. Set f(x) = µS(x). If T in in P(S) then there is a
polynomial g(x) with degree of g(x) less then degree of
f(x) such that T = g(S). Since g(x) is not the zero
polynomial, f(x) is irreducible and deg(g) < deg(f)

it must be the case that f(x), g(x) are relatively prime.
Consequently, there are polynomials a(x), b(x) such that
a(x)f(x) + b(x)g(x) = 1. Substituting S for x we get
a(S)f(S) + b(S)g(S) = IV . Since f(S) = 0V→V and
g(S) = T we have b(S)T = IV . Thus, b(S) ∈ P(S) is
an inverse to T.

5. Set fi(x) = µT,vi
(x). Then fi(x) divides p(x)m

and so there is a natural number mi ≤ m such that
fi(x) = p(x)mi . Let j be chosen such that mj ≥ mi for
i = 1, 2, . . . , n. Then the gcd of fi(x) is fj(x) = p(x)mj .

However, the gcd(f1, . . . , fn) is µT (x). Thus, fj(x) =

µT (x) and vj is a maximal vector.

6. Since T is indecomposable, µT (x) = p(x)m for some
irreducible polynomial p(x). By Exercise 5 there is a j

such that vj is maximal. Since T is indecomposable, T is
cyclic. Therefore V = 〈T,vj〉.

7. Let f(x) = µT (x). Since T is indecomposable,
deg(f) = dim(V ) = 2n+ 1. Since the degree of f(x) is

odd it has a real root a. Thus, x−a divides f(x). However,
since f(x) has single distinct irreducible factor it follows
that f(x) = (x− 1)2n+1.

8. Let f(x) = µT (x). Then either f(x) = (x − a)2n

for some n or f(x) = p(x)n for some real irreducible
quadratic polynomial. By the theory of cyclic operators
in the first case the number of T -invariant subspaces is
2n+ 1 and in the latter case the number is n+ 1.

9. Let f(x) = µT (x). Then either f(x) = (x − a)4

or g(x)2 where g(x) is an irreducible polynomial of de-
gree 2. In either case, let v be a maximal vector. In the
first case, any vector w such that 〈T,w〉 �= V lies in
〈T, (T −aI)(v)〉 which has dimension three and contains
p3 vectors. Any other vector is maximal and hence in this
case there are p4 − p3 maximal vectors.

Suppose f(x) = g(x)2. Now if V �= 〈T,w〉 then w be-
longs to 〈T, g(T )(v)〉 which has dimension 2 and p2 vec-
tors. In this case there are p4 − p2 maximal vectors.

10. Suppose T is indecomposable. Let µT (x) =

f(x) = p(x)m where p(x) is irreducible. Let v be
a maximal vector. The only proper T−invariant sub-
spaces of V are 〈T, p(T )k(v)〉 for 1 ≤ k ≤ n. More-
over, 〈T, p(T )j+1(v)〉 is a subspace of 〈T, p(T )j(v)〉
and hence 〈T, p(T )(v)〉 is the unique maximal proper
T−invariant subspace.

On the other hand, suppose T is not indecomposable.
Then there are T−invariant subspaces U and W such that
V = U ⊕ W. Let U ′ be a proper maximal T−invariant
subspace of U (possibly {0}) and similarly choose W ′ in
W. Then U ⊕ W ′ and U ′ ⊕ W are two distinct proper
maximal T−invariant subspaces.

4.5. Invariant Factors and
Elementary Divisors of a

Linear Operator
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4.5. Invariant Factors and Elementary Divisors of a Linear Operator 39

1. Set di = dim(Ui). Then (d1, . . . , d5) =

(12, 22, 28, 34, 38).

2. The invariant factors, di(x), ordered so d1|d2|d3|d4 are

d1(x) = (x2 − x+ 1)2(x2 + 1)

d2(x) = (x2 − x+ 1)2(x2 + 1)2(x+ 2)

d3(x) = (x2 − x+ 1)3(x2 + 1)2(x+ 2)2

d4(x) = (x2 − x+ 1)4(x2 + 1)3(x+ 2)2

dim(V ) = 44.

3. The elementary divisors and the invariant factors are
x2 + 1 and x2 + 1

4. There is a single elementary divisor and invariant factor
which is (x2 + 1)2

5. The elementary divisors are x2 + 1, x + 1 and x − 1.

There is a single invariant factor, x4 − 1.

6. The elementary divisors are x, x, x − 1, x − 1 and the
invariant factors are x2 − x, x2 − x.

7. Assume the minimum polynomial of T is
p1(x) . . . pt(x) where pi(x) is irreducible and distinct.
Let Vi = {v ∈ V |pi(T )v = 0}. Then V = V1⊕· · ·⊕Vt.

If each Vi is completely reducible then so is V . Con-
sequently, we may reduce to the case that the minimum
polynomial is irreducible. In this case, there are vectors
v1, . . . ,vs such that µT,vi

(x) = p(x) is irreducible and

V = 〈T,v1〉 ⊕ · · · ⊕ 〈T,vs〉.

Each space 〈T,vj〉 is T−irreducible. It follows from this
that V is completely reducible.

8. Assume V is completely reducible and µT (x) = (x −
α1) . . . (x−αt) where αi are distinct. Set Vi = {v ∈ V :

(T − αiIV )(v) = 0} Then

V = V1 ⊕ · · · ⊕ Vt.

Let Bi be a basis for Vi and set B = B1� . . . �Bt. Then
MT (B,B) is a diagonal matrix.

Conversely, assume that T is diagonalizable. Then there
exists a basis B consisting of eigenvectors. Let α1, . . . , αt

be the distinct eigenvectors and set Vi = {v ∈ V |T (v) =
αiv}. Then V1 + · · · + Vt is a direct sum. Since B ⊂
V1 + · · ·+ Vt

V = V1 + · · ·+ Vt.

Consequently, V = V1 ⊕ · · · ⊕ Vt. Thus, V is completely
reducible. Now µT (x) = (x− α1) . . . (x− αt).

9. Let dim(V ) = n and set Vi = {v ∈ V |pi(x)n(v) =

0} so that Vi is the pi−Sylow subspace. If there are
infinitely many T−invariant subspaces in some Vi then
there are clearly infinitely many T−invariant subspaces.

Suppose, on the other hand that each Vi has finitely many
T−invariant subspaces. Suppose U is a T−invariant sub-
space. Set U = U ∩ Vi. Then

U = U1 ⊕ · · · ⊕ Ut.

It follows from this that there are only finitely many
T−invariant subspaces.

10. Let dim(V ) = n and p1(x), . . . , pt(x) be the
distinct irreducible factors of µT (x) Set Vi = {v ∈
V |pi(T )(v) = 0} so that Vi is the pi(x)−Sylow subspace
of V and

V = V1 ⊕ · · · ⊕ Vt.

Then T is cyclic if and only if T restricted to each Vi is
cyclic. Also, V has finitely many T−invariant subspaces
if and only there are finitely many T−invariant subspaces
in Vi for each i by Exercise 9. Thus, we may assume that
µT (x) = p(x)m for some irreducible polynomial p(x).
If T is cyclic in this case then the number of T -invariant
subspaces is m + 1. On the other hand suppose T is not
cyclic. Then there are at least two elementary divisors
(invariant factors). Thus, there are vectors v1,v2 with
µT,v1

(x) = p(x)m1 and µT,v2
(x) = p(x)m2 such that
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40 Chapter 4. Theory of a Single Linear Operator

〈T,v1〉 ∩ 〈T,v2〉 = {0}.

Set w1 = p(T )m1−1(v1),w2 = p(T )m2−1(v2). Then
µT,w1(x) = µT,w2(x) = p(x) and

〈T,w1〉 ∩ 〈T,w2〉 = {0}.

Now each of the spaces 〈T,w1 + cw2〉, c ∈ F is distinct
and T−invariant. Since F is infinite there are infinitely
many T−invariant subspaces.

11. Let V (p) = {v ∈ V |p(T )m(v) = 0} and V (q) =

{v ∈ V |q(T )n(v) = 0}. Then V = V (p)⊕ V (q). Since
a(x)p(x)m+b(x)q(x)n = 1 it follows that a(T )p(T )m+

b(T )q(T )n = IV . However, a(T )p(T )n restricted to
V (p) is the zero map and consequently, b(T )q(T )n re-
stricted to V (p) is the identity. Then b(T )q(T )np(T ) re-
stricted to V (p) is identical to p(T ) restricted to V (p).

In a similar manner, b(T )q(T )n restricted to V (q) is the
zero map and a(T )p(T )m restricted to V (q) is the identity
map. Consequently a(T )p(T )mq(T ) restricted to V (q) is
the same as q(T ) restricted to V (q). Thus, f(T ) restricted
to V (p) is equal to the restriction of p(T ) to V (p) and
f(T ) restricted to V (q) is equal to the restriction of q(T )
to V (q).

Suppose now that x = vp + vq with vp ∈ V (p) and vq ∈
V (q). Then f(T )(x) = f(T )(vp + vq) = f(T )(vp) +

f(T )(vq) = p(T )(vp) + q(T )(vq). If l = max(m,n)

then f(T )l(x) = p(T )l(vp) + q(T )l(vq) = 0 + 0 = 0.

Thus, f(T )l = 0V→V and f(T ) is nilpotent.

12. Let p(x)e1 , . . . , p(x)et be the elementary divisors of
T where e1 ≤ e2 · · · ≤ et ≤ m. Then there are vectors
v1, . . . ,vt such that µT,vi

(x) = p(x)ei and

V = 〈T,v1〉 ⊕ · · · ⊕ 〈T,vt〉.

Now U1 =

〈T, p(T )e1−1(v1)〉 ⊕ · · · ⊕ 〈T, p(T )et−1(vt)〉

and has dimension td which proves a).

Now assume ek−1 < j − 1 ≤ ek and el−1 < j ≤ el.

Clearly k ≤ l.

Now

Uj−1 = 〈T,v1〉 ⊕ · · · ⊕ 〈T,vk−1〉⊕

〈T, p(T )ek−j+1(vj)〉⊕

· · · ⊕ 〈T, p(T )et−j+1(vt)〉 (4.4)

Uj = 〈T,v1〉 ⊕ · · · ⊕ 〈T,vl−1〉⊕

〈T, p(T )el−j(vl)〉⊕

· · · ⊕ 〈T, p(T )et−j(vt)〉 (4.5)

It follows from (4.4) that mj−1 = dim(Uj−1) = e1d +

. . . ek−1d+ [t− k+1](j− 1)d. It follows from (4.5) that
mj = dim(Uj) = e1d+ . . . el−1d+ [t− l + 1]jd.

Suppose k = l then mj − mj−1 = dim(Uj) −
dim(Uj−1) = [t − l + 1]d and mj−mj−1

d = t − l + 1

which is the number of ei which are greater than or equal
to j.

Suppose k < l. Then ek = · · · = el−1 = j − 1. Making
use of this we get that

mj = dim(Uj) =

e1d+ . . . ek−1d+ (j − 1)d[l − 1− k] + [t− l + 1]jd.

Then

mj −mj−1 =

(j−1)d[l−1−k]+ [t− l+1]jd− [t−k+1](j−1)d =

[t− l + 1]d

and we again get mj−mj−1

d = [t − l + 1] which is equal
to the number of ei which are greater than or equal to j.
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4.6. Canonical Forms 41

13. Since each invariant factor is the product of distinct
elementary divisors, it follows that the characteristic poly-
nomial of T is equal to the product of the elementary
divisors of T . It therefore suffices to prove this in the
case that µT (x) = p(x)m for some irreducible polyno-
mial p(x) of degree d. In this case dm = deg(p(x)m) =

deg(χT (x)) = dim(V ) so that m = dim(V )
d .

4.6. Canonical Forms

1.




0 0 0 −1 0 0 0 0 0 0

1 0 0 −2 0 0 0 0 0 0

0 1 0 −2 0 0 0 0 0 0

0 0 1 −2 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 −4

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 −4

0 0 0 0 0 0 0 0 1 0




2.
(
0 −4

1 4

)

3.



0 0 −1

1 0 −2

0 1 −2




4.




3 0 0 0

1 3 0 0

0 0 −2 0

0 0 1 −2




5.




2 0 0 0

1 2 0 0

0 0 2 0

0 0 1 2




6.




1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1


 ,




1 0 0 0

0 1 0 0

0 1 1 0

0 0 1 1







1 0 0 0

1 1 0 0

0 0 1 0

0 0 1 1


 ,




1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1




7.




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1




,




1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1




8. 044,




0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0


 ,




0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0







0 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0


 ,




0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0




9. The characteristic polynomial of a nilpotent operator
on an n−dimensional vector space is xn. It is completely
reducible if and only if the minimum polynomial has dis-
tinct roots and consequently we must have µT (x) = x.

This implies that T = 0V→V .

10. Every vector of V satisfies p(T )e(v) = 0 and there-
fore p(T )e = 0V→V .

11. Let A be a square matrix. We have seen
that if f(x) ∈ F[x] then f(Atr) = f(A)tr. Since
also Mf(S)(B,B) = f(MS(B,B)) it follows that
S and S′ have the same minimum polynomial. Let
p1(x), . . . , ps(x) be the distinct irreducible polynomi-
als dividing µS(x) = µS′(x) and let µS(x) =

p1(x)
m1 . . . ps(x)

ms . Let Vi = {v ∈ V |pi(S)mi(v) =

0} and V ′
i = {v ∈ V |pi(S′)mi(v) = 0}. Note

for any operator T, nullity(T ) and nullity(MT (B,B))
and equal and for any square matrix nullity(A) and
nullity(Atr) are equal. It follows that dim(Vi) =

dim(V ′
i ). By Exercise 12 of Section (4.5) we can deter-

mine the elementary divisors of S divisible by pi(x) by
determining the dimensions of the Ker(pi(S)

k) for all
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42 Chapter 4. Theory of a Single Linear Operator

k ≤ mi and likewise for the elementary divisors of S′.

However, these numbers will all be the same and conse-
quently, S and S′ have the same elementary divisors and
invariant factors.

12.




0 0 0 0

0 0 0 0

0 0 2 0

0 0 1 2




13.




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1




4.7. Linear Operators on Real
and Complex Vector Spaces

1. i) implies ii). Assume T is completely reducible. Note
that the assumption that T is completely reducible carries
over to the restriction of T to any T−invariant subspace.

Set f(x) = µT (x) and n = dim(V ). Since f(x) ∈ C[x]
f(x) splits into linear factors. Let α1, . . . , αt be the dis-
tinct roots of f(x). Set Vi = {v ∈ V |(T − αiIV )

n(v) =

0}. Then V = V1 ⊕ · · · ⊕ Vt. We show that, in fact,
T (v) = αiv for v ∈ Vi. Suppose to the contrary that
there exists v ∈ Vi such that µT,v(x) = (x − αi)

k with
k > 1. Then 〈T,v〉 is indecomposable. However, by
the above remark 〈T,v〉 is completely reducible, so we
have a contradiction. Thus, every non-zero vector in Vi

is an eigenvector with eigenvalue αi. In now follows that
µT (x) = (x− α1) . . . (x− αt).

ii) implies iii). Assume µT (x) = (x − α1) . . . (x − αt)

with αi distinct. Set Vi = {v ∈ V |T (v) = αiv}. Then
V = V1⊕ · · ·⊕Vt. For each i, T restricted to Vi is αiIVi

.

Choose a basis Bi for Vi. Each vector in Bi is an eigen-
vector with eigenvalue αi. Now set B = B1� . . . �Bt. This
is a basis of eigenvectors.

iii) implies iv). Let B be a basis of eigenvectors. Then
µT (B,B) is a diagonal matrix which must be the Jordan
canonical form of T.

iv) implies i). Let B be a basis for V such that MT (B,B)
is the Jordan canonical form of T. Since the Jordan canon-
ical form is diagonal this implies that the basis B consists
of eigenvectors. Let α1, . . . , αt be the distinct eigenvalues
and Vi = {v ∈ V |T (v) = αiv}. Then V = V1⊕· · ·⊕Vt.

Suppose U is a T−invariant subspace of V. Set Ui =

U ∩ Ui. Then

U = U1 ⊕ · · · ⊕ Ut.

Since T acts a scalar when restricted to Vi every subspace
of Vi is T−invariant. Let Wi be any complement to Ui in
Vi and set W = W1⊕· · ·⊕Wt. Then W is a T−invariant
complement to U in V.

2. i) implies ii). Let α be an eigenvalue of T and let (x−
αi)

m be the exact power of (x−α) which divides µT (x).

Let µT (x) = (x − α)mf(x). Then f(x) and x − α are
relatively prime. Set Vα = {v ∈ V |(T − αIV )(v) = 0}
and Vf = {v ∈ V |f(T )(v) = 0}. Then V = Vα ⊕ Vf . It
follows from our hypothesis that Vf = {0} and f(x) = 1.

If T has more than one elementary divisor then V can be
decomposed into a direct sum, therefore by our hypothe-
sis, there is only one elementary divisor and one Jordan
block.

ii) implies i). If there is a single Jordan block of size n,
say Jn(α), then T is cyclic and the minimum polynomial
of T is (x− α)n and T is indecomposable.

3. The minimal polynomial is µT (x) = (x− 1)(x3 − 1).

The characteristic polynomial is (x− 1)(x3 − 1)2.

The invariant factors are (x− 1)(x3 − 1) and x3 − 1.

The elementary divisors are x − 1, (x − 1)2, x2 + x +

1, x2 + x+ 1.
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4.




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 1 −1




5. Set ω = − 1
2+i

√
3
2 and ω2 = 1

ω = − 1
2−i

√
3
2 . Then the

Jordan canonical form of T over the complex numbers is




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 ω 0 0 0

0 0 0 0 ω 0 0

0 0 0 0 0 ω2 0

0 0 0 0 0 0 ω2




6. We define S, T on C4 by matrices with respect to the
standard basis:

S =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1


 , T =




1 0 0 0

1 1 0 0

0 0 1 0

0 0 1 1


 .

Then χS(x) = χT (x) = (x−1)4 And µS(x) = µT (x) =

(x− 1)2. The elementary divisors (invariant factors) of S
are x − 1, x − 1, (x − 1)2. The elementary divisors of T
are (x− 1)2, (x− 1)2.

7. There are eight possibilities. They are:

J2(0)⊕ J3(−2i)⊕ J1(0)⊕ J1(0)⊕ J1(0)

J2(0)⊕ J3(−2i)⊕ J1(0)⊕ J2(0))

J2(0)⊕ J3(−2i)⊕ J1(0)⊕ J1(0)⊕ J1(−2i)

J2(0)⊕ J3(−2i)⊕ J2(0)⊕ J1(−2i)

J2(0)⊕ J3(−2i)⊕ J1(0)⊕ J2(−2i)

J2(0)⊕ J3(−2i)⊕ J1(−2i)⊕ J1(−2i)⊕ J1(−2i)

J2(0)⊕ J3(−2i)⊕ J1(−2i)⊕ J2(−2i)

J2(0)⊕ J3(−2i)⊕ J3(−2i)

8. The proof is by induction on n = dim(V ). Let
α1, . . . , αs be the distinct eigenvalues of S and β1, . . . , βt

the distinct eigenvalues of T. For α an eigenvalue of S set
VS,α = {v ∈ V |(S − αIV )

n(v) = 0}. Since S and T

commute, VS,α is T−invariant. Likewise, define VT,β for
β = βj , 1 ≤ j ≤ t. Then VT,β is S−invariant.

As usual we have

V = VS,α1
⊕ · · · ⊕ VS,αs

= VT,β1
⊕ · · · ⊕ VT,βt

.

Suppose s > 1. Then we can apply induction and con-
clude that for each i, 1 ≤ i ≤ s there is a basis Bi of
VS,αi such that the matrix of S and T restricted to VS,αi

with respect to Bi is in Jordan canonical form. Thus, we
can assume that s = 1. In a similar way we can reduce to
the case that t = 1. Let α = α1, β = β1.

Set ES,α = {v ∈ V |S(v) = αv}. Then ES,α is
T−invariant. It is then the case there must be a vec-
tor v ∈ ES,α which is also an eigenvector for T. Then
Span(v) is S and T−invariant. Let Ŝ denote the transfor-
mation induced on V/Span(v) by S and similarly define
T̂ . By the induction hypothesis there exists a basis B̂ =

(v̂1, . . . , v̂n−1) such that the matrix of Ŝ and T̂ with re-
spect to B̂ is in Jordan canonical form. For 1 ≤ i ≤ n− 1

let vi+1 be a vector in V such that Span(v) + vi+1 = v̂i

and set v1 = v. Then B = (v1, . . . ,vn) is a basis for
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44 Chapter 4. Theory of a Single Linear Operator

V and MS(B,B) and MT (B,B) are in Jordan canonical
form.

9.




−2 0 0 0

1 −2 0 0

0 0 2 0

0 0 1 2




10. Let B be a basis such that M = MT (B,B) is in Jor-
dan canonical form. Let A be the diagonal part of M and
B = M − A. Then A is a diagonal matrix and B is a
strictly lower triangular matrix and hence is nilpotent. Let
D be the operator such that MD(B,B) = A and N the
operator such that MN (B,B) = B (so that N = T −D).
Then D is a diagonalizable operator and N is a nilpo-
tent operator. Note for a Jordan block the diagonal part
is a scalar matrix (scalar times the identity) which clearly
commutes with the nilpotent part. From this it follows
that AB = BA and consequently DN = ND.

Suppose there exists polynomials d(x), n(x) such that
d(T ) = D,n(T ) = N. We use this to prove uniqueness.

Suppose also that D′ is diagonalizable, N ′ is nilpotent,
D′N ′ = N ′D′ and T = D′ + N ′. Since T = D′ +

N ′ we have D′T = D′(D′ + N ′) = (D′)2 + D′N ′ =

(D′)2 +N ′D′ = (D′ +N ′)D′ = TD′. Similarly, T and
N ′ commute.

Since D and N are polynomials in T it follows that D and
D′, N and N ′ commute. From D + N = T = D′ + N ′

we conclude that

D −D′ = N ′ −N (4.6)

The operator on the left of (4.6) is the difference of two
commuting diagonalizable operators and so is diagonal-
izable. The operator on the left hand side of (4.6) is
the difference of two commuting nilpotent operators and
therefore is nilpotent. However, the only nilpotent diago-
nalizable operator is the zero operator. Thus D − D′ =

N −N ′ = 0V→V whence D = D′ and N = N ′.

It therefore suffices to prove that there exist polynomials
d(x) and n(x) such that d(x) + n(x) = 1 and d(T ) is
diagonalizable, n(T ) is nilpotent.

Set f(x) = µT (x) and assume that f(x) = (x −
α1)

m1 . . . (x − αs)
ms with αi distinct. Set Vi = {v ∈

V |(T − αiIV )
mi = 0} so that

V = V1 ⊕ · · · ⊕ Vs.

Now let fi(x) = f(x)
(x−αi)mi

. Then fi(x) and (x − αi)
mi

are relatively prime and consequently there exists polyno-
mials ai(x), bi(x) such that

ai(x)fi(x) + bi(x)(x− αi)
mi = 1.

Now ai(T )fi(T ) acts as the zero operator on V1 ⊕ · · · ⊕
Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vs and as the identity operator on
Vi. Then αiai(T )fi(T ) is the zero operator on V1⊕ · · ·⊕
Vi−1⊕Vi+1⊕· · ·⊕Vs and acts as scalar multiplication by
αi on Vi. Also, ai(T )fi(T )(T−αiIV ) is the zero operator
on V1 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vs and is nilpotent on
Vi.

Now set d(x) =
∑s

i=1 αiai(x)fi(x) and n(x) =∑s
i=1 ai(x)fi(x)(x − αi). Then d(T ) acts a scalar mul-

tiplication by αi on Vi for each i and n(T ) acts as
T − αiIV on each Vi. Consequently, d(T ) is a diag-
onalizable operator, n(T ) is a nilpotent operator and
d(T ) + n(T ) = T. Since d(T ), n(T ) are polynomials in
T we have d(T )n(T ) = n(T )d(T ).

11. Assume first that T has no real eigenvectors. Let p(x)
be an irreducible factor of µT (x). Then p(x) has no real
roots and therefore p(x) is a real quadratic. Suppose U

is a T−invariant subspace. Let the elementary divisors
of T restricted to U be p1(x)

m1 , . . . , ps(x)
ms (note that

the pi(x) are not necessarily distinct. Each pi(x) is a real
irreducible quadratic. Then the degree of pi(x)mi is 2mi

and the dimension of U is the sum 2m1 + · · · + 2ms =

2(m1 + . . .ms).

12. Let T be the operator with matrix
(

0 1

−1 0

)
with

respect to the standard basis. The minimum polynomial of
T is x2+1 which has no real roots. However, T 2 = −IR2 .

13. TS = S−1(ST )S. Thus, TS and ST are similar.
Therefore if ST is diagonalizable then so is TS.
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Chapter 5

Inner Product Spaces

5.1. Inner Products

1. Positive definite. If u =



a1
...
an


 then

u · u = a21 + · · ·+ ann

which is non-negative since each square is non-negative
and zero if and only if a1 = · · · = an = 0, that if, if and
only if u = 0.

Symmetry If u =



a1
...
an


 ,v =



b1
...
bn


 then

u · v = a1b1 + · · ·+ anbn = b1a1 + · · ·+ bnan = v · u

since for all real numbers a, b we have commutativity of
multiplication: ab = ba.

Additivity If u =



a1
...
an


 ,v =



b1
...
bn


 ,w =



c1
...
cn


 then

(u+ v) ·w =



a1 + b1

...
an + bn


 ·



c1
...
cn


 =

(a1 + b1)c1 + · · ·+ (an + bn)cn =

(a1c1 + b1c1) + . . . (ancn + bncn)

= (a1c1+· · ·+ancn)+(b1c1+· · ·+bncn) = u·w+v·w.

Essentially additivity holds because multiplication dis-
tributes over addition in R.

Homogeneity If u =



a1
...
an


 ,v =



b1
...
bn


 and γ ∈ R

then

(γu) · v =



γa1

...
γan


 ·



b1
...
bn




= (γa1)b1 + · · ·+ (γan)b)n = γ(a1b1) + · · ·+ γ(anbn)

= γ(a1b1 + · · ·+ anbn) = γ(u · v).

Essentially homogeneity holds since multiplication in R
is associative.

2. 〈u, γv〉 = 〈γv,u〉 =

γ〈v,u〉 = γ〈v,u〉 = γ̄〈u,v〉.

3. 〈u,v +w〉 = 〈v +w,u〉 =

〈v,u〉+ 〈w,u〉 = 〈v,u〉+ 〈w,u〉
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46 Chapter 5. Inner Product Spaces

〈u,v〉+ 〈u,w〉.

4. Positive definite Let w =



w1

...
wn


. Then 〈w,w〉 =

〈



w1

...
wn


 ,



w1

...
wn


〉 = α1w1w1 + · · ·+ αnwnwn (5.1)

Each wiwi is non-negative. Since αi > 0 also αiwiwi ≥
0 and zero if and only if wi = 0. Then each term of (5.1)
is non-negative. Therefore, 〈w,w〉 is non-negative and
zero if and only if each term is zero, if and only if wi = 0

for all i, if and only if w = 0.

Conjugate Symmetry Suppose u =



u1

...
un


 and v =



v1
...
vn


 . For each term we haveαiuiv̄i = αiuiv̄i =

αiviūi since αi is real. This implies that 〈v,u〉 = u,v〉.

Additivity in the first argument This holds since multi-
plication distributes over addition in F.

Homogeneity in the first argument

This holds since multiplication is associative and commu-
tative: For each term we have

αi(γui)vi = αi[γ(uivi)] =

(αiγ)(uivi) = (γαi)(uivi) = γ[αi(uivi)].

5. Positive definite

〈u,u〉 = 〈S(u), S(u)〉EIP ≥ 0 since 〈 , 〉 is an inner
product and is equal to zero if and only if S(u) = 0. How-
ever, S is an invertible operator and therefore S(u) = 0

if and only if u = 0.

Conjuagate symmetry
〈u,v〉 = 〈S(u), S(v)〉EIP = 〈S(v), S(u)〉EIP =

〈v,u〉.

Additivity in the first argument

〈u+v,w〉 = 〈S(u+v), S(w)〉EIP Since S is linear and
〈 , 〉EIP is additive in the first argument we have

〈S(u+ v), S(w)〉EIP =

〈S(u) + S(v), S(w)〉EIP =

〈S(u), S(w)〉EIP + 〈S(v), S(w)〉EIP =

〈u,w〉+ 〈v,w〉.

Homogeneity in the first argument

By the linearity of S and the homogeneity of 〈 , 〉EIP in
the first argument we have

〈γu,v〉 = 〈S(γu), Sv)〉EIP = 〈γS(u), S(v)〉EIP

γ〈S(u), S(v)〉EIP = γ〈u,v〉.

6. Positive definite

Let A have entries aij . The (i, i)−entry of 〈A,A〉 is

n∑
j=1

aijaij

It follows that 〈A,A〉 =
∑n

i=1

∑n
j=1 aijaij . Since each

aijaij ≥ 0 〈A,A〉 ≥ 0. A term aijaij = 0 if and only
if aij = 0 and therefore the sum is zero if and only if
A = 0nn.

Conjugate symmetry

The (j, j)−entry of AtrB is
∑n

i=1 aijbij and therefore
〈A,B〉 is

n∑
i=1

n∑
j=1

aijbij
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5.1. Inner Products 47

In a similar fashion

〈B,A〉 =
n∑

i=1

n∑
j=1

bijaij

Since aijbij = bijaij the conjugate symmetry follows.

Additivity in the first argument

This follows from the formula and the fact that multipli-
cation distributes over addition in F.

Homogeneity in the first argument

This follows from the formula and the fact that multipli-
cation is associative in F.

7. 〈 , 〉 is an inner product.

Throughout u = (u1,u2),v = (v1,v2),w = (w1,w2)

with u1,v1,w1 ∈ V1 and u2,v2,w2 ∈ V2.

Positive definite

Assume 〈u,u〉 = 〈u1,u1〉1 + 〈u2,u2〉2. Each of these
is non-negative. Moreover, we get zero if and only if

〈u1,u1〉1 = 〈u2,u2〉2 = 0

if and only if

u1 = 0V1 ,u2 = 0V2 .

Conjugate symmetry

〈u,v〉 = 〈u1,v1〉1 + 〈u2,v2〉2 =

〈v1,u1〉1 + 〈v2,u2〉2 = 〈v1,u1〉1 + 〈v2,u2〉2

= 〈v,u〉

Additivity in the first argument

〈u+ v,w〉 = 〈u1 + v1,w1〉1 + 〈u2 + v2,w2〉2 =

〈u1,w1〉1 + 〈v1,w1〉1 + 〈u2,w2〉2 + 〈v2,w2〉2 =

(〈u1,w1〉1 + 〈u2,w2〉2) + (〈v1,w1〉1 + 〈v2,w2〉2)

= 〈u,w〉+ 〈v,w〉.

Homogeneity in the first argument

〈γu,v〉 = 〈γu1,v1〉1 + 〈γu2,v2〉2 =

γ〈u1,v1〉1 + γ〈u2,v2〉2 =

γ(〈u1,v1〉1 + 〈u2,v2〉2) = γ〈u,w〉.

8. Assume that v = c1v1+ · · ·+cnvn = 0. Then v ·vj =

0 for all j. Using additivity and homogeneity in the first
argument we get

c1〈v1,vj〉+ · · ·+ cn〈vn,vj〉 = 0

This implies that



c1
...
cn


 is in the null space of the matrix

A. It immediately follows that (v1, . . . ,vn) is linearly
independent if and only if null(A) = 0 if and only if A
is invertible.

9. If ci > 0 for all i then 〈 , 〉 is an inner product by
Exercise 4. Suppose some ci ≤ 0. Then 〈ei, ei〉 ≤ 0

which contradicts positive definiteness. Thus, if 〈 , 〉 is an
inner product, all ci > 0.

10. First note that if f, g ∈ V then spt(f) ∪ spt(g) is
finite so there are only finitely many non-zero terms in∑

i∈N f(i)g(i).

Positive definite

Let I = spt(f). Then 〈f, f〉 =
∑

i∈I f(i)
2. Each

f(i)2 > 0 for i ∈ I. Therefore 〈f, f〉 ≥ . Moreover
we obtain a positive sum unless I = ∅, that is, unless f is
the zero function.

Symmetry

This follows since for all i ∈ spt(f)∩ spt(g), f(i)g(i) =

g(i)f(i) since multiplication of real numbers is commu-
tative.
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48 Chapter 5. Inner Product Spaces

Additivity in the first argument

Set J = [spt(f)∩spt(h)]∪[spt(g)∩spt(h)]. Let f, g, h ∈
V and i ∈ J. Then

[f(i) + g(i)]h(i) = f(i)h(i) + g(i)h(i)

since multiplication distributes over addition in R.

It then follows that 〈f+g, h〉 =
∑

i∈J [f(i)+g(i)]h(i) =∑
iinJ [f(i)h(i) + g(i)h(i)] =

∑
i∈J

f(i)h(i) +
∑
i∈J

g(i)h(i) = 〈f, h〉+ 〈g, h〉.

Homogeneity in the first argument

Set I = spt(f) ∩ spt(g). Then 〈γf, g〉 =
∑
i∈I

[γf(i)]g(i) =
∑
i∈I

γ(f(i)g(i)) =

γ
∑
i∈I

f(i)g(i) = γ〈f, g〉.

11. This is a real inner product.

Positive definite

Since 〈v,v〉 is a non-negative real number, 〈v,v〉R =

〈v,v〉 and so is non-negative and equal to zero if and only
if v = 0.

Symmetry

Suppose 〈v,w〉 = a+ bi with a, b ∈ R. Then 〈v,w〉R =

a. We then have 〈w,v〉 = 〈v,w〉 = a+ bi = a − bi.

Thus, 〈v,w〉R = a.

Additivity in the first argument

Suppose 〈u,w〉 = a+bi, 〈v,w〉 = c+di with a, b, c, d ∈
R. Then 〈u,w〉R = a, 〈v,w〉R = c.

〈u+ v,w〉 = 〈u,w〉+ 〈v,w〉 =

(a+ bi) + (c+ di)=(a+ c) + (b+ d)i.

Thus, 〈u+w, 〉R = a+ b as required.

Homogeneity in the first argument

Assume 〈v,w〉 = a+ bi so that 〈v,w〉R = a. Let γ ∈ R.
Then 〈γv,w〉 = γ〈v,w〉 = γ(a+ bi) = (γa) + (γb)i. It
follows that 〈γv,w〉R = γa = γ〈v,w〉R.

5.2. The Geometry of Inner
Product Spaces

1. Let v,w ∈ u⊥ so that 〈v,u〉 = 〈w,u〉 = 0.

By additivity in the first argument we have

〈v +w,u〉 = 〈v,u〉+ 〈w,u〉 = 0 + 0 = 0.

Thus, v +w ∈ u⊥.

Now assume γ ∈ F. By homogeneity in the first argument
we have

〈γv,u〉 = γ〈v,u〉 = γ × 0 = 0.

So, if v ∈ u⊥ and γ is a scalar then γv ∈ u⊥.

2. Define a map fu : V → F by fu(v) = 〈v,u〉.
Since 〈 , 〉 is additive and homogeneous in the first ar-
gument, the map fu is a linear transformation. Assume
u �= 0. Then for a ∈ F, fu( a

〈u,u〉u) = a and conse-
quently, fu is surjective. Now by the rank nullity theorem,
dim(Ker(fu) = n− 1. However, Ker(fu)) = u⊥.

3. Assume w ∈ W∩W⊥. Then w ⊥ w that is, 〈w,w〉 =
0. By positive definiteness, w = 0.

4. 〈ax2 + bx+ c, x2 + x+ 1〉 =
∫ 1

0
(ax2 + bx+ c)(x2 +

x+ 1)dx =

∫ 1

0

[ax4+(a+ b)x3+(a+ b+ c)x2+(b+ c)x+ c]dx =

(a
x5

5
+(a+ b)

x4

4
+ (a+ b+ c)

x3

3
+(b+ c)

x2

2
+ cx|10 =
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5.2. The Geometry of Inner Product Spaces 49

a

5
+

a+ b

4
+

a+ b+ c

3
+

b+ c

2
+ c

This reduces to finding the solutions to the homogeneous
equation

47a+ 65b+ 110c = 0.

A basis for (x2 + x+ 1)⊥ is ( 11047 x2 − 1, 65
47x

2 − 1).

5. d(A,B) =
√

〈A−B,A−B〉. A − B =(
−4 −3

3 −4

)
.

We have to compute the trace of the product (A −

B)tr(A−B) =

(
25 0

0 25

)
. Thus, d(A,B) = 5

√
2.

6. 〈A, I2〉 is equal to the trace of Atr which is the same
as the trace of A. So, the orthogonal complement to I2
consists of all matrices with trace zero. A basis for this is

(

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
1 0

0 −1

)
).

7. The subspace of diagonal matrices in M22(R) has basis

(

(
1 0

0 0

)
,

(
0 0

0 1

)
).

The orthogonal complement to
(
1 0

0 0

)
consists of all

matrices
(

0 a12
a21 a22

)
. The orthogonal complement to

the matrix
(
0 0

0 1

)
consists of all matrices

(
a11 a12
a21 0

)
.

Thus, the orthogonal complement to the space of diagonal
matrices in M22(R) consists of all matrices with zeros on
the diagonal.

8. d(x2, x) =
√

〈x2 − x, x2 − x〉.

〈x2 − x, x2 − x〉 =
∫ 1

0
(x2 − x)2dx =

∫ 1

0
(x4 − 2x3 + x2)dx = [x

5

5 − 2x4

4 + x3

3 ]|10 =

1

5
− 2

4
+

1

3
=

1

15
.

d(x2, x) =

√
1

15
=

√
15

15
.

9. 〈u− 〈u,v〉
‖v‖2 v,v〉 = 〈u,v〉 − 〈u,v〉

‖v‖2 〈v,v〉 =

〈u,v〉 − 〈u,v〉
‖v‖2 ‖ v ‖2= 〈u,v〉 − 〈u,v〉 = 0.

10. 〈u+ v,u+ v〉 = 〈u,u〉+ 〈u,v〉+ 〈u,v〉+ 〈v,v〉.

〈u− v,u− v〉 = 〈u,u〉 − 〈u,v〉 − 〈u,v〉+ 〈v,v〉.

〈u+ iv,u+ iv〉 = 〈u,u〉 − i〈u,v〉+ i〈u,v〉+ 〈v,v〉.

〈u− iv,u− iv〉 = 〈u,u〉+ i〈u,v〉 − i〈u,v〉+ 〈v,v〉.

We then have

‖ u+v ‖2 − ‖ u−v ‖2 +i ‖ u+iv ‖2 −i ‖ u−iv ‖2=

(〈u,u〉 − 〈u,u〉+ i〈u,u〉 − i〈u,u〉)+

(〈u,v〉 − (−〈u,v〉)− i2〈u,v〉 − i2〈u,v〉)+

〈u,v〉+ 〈u,v〉+ i2〈u,v〉+ i2〈u,v〉+

(〈v,v〉 − 〈v,v〉+ i〈v,v〉 − i〈v,v〉) =

4〈u,v〉.

11. Set x =




x1
x2√
2

...
xn√
n




and y =




y1√
2y2
...√
nyn


 . Apply Cauchy-

Schwartz:
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50 Chapter 5. Inner Product Spaces

(x · y)2 ≤ (x · x)(y · y).

The left hand side is

(

n∑
i=1

xiyi)
2

while the right hand side is

(

n∑
i=1

x2
i

i
)(

n∑
i=1

iy2i ).

12. a) Since d(u,v) =
√

〈u− v,u− v〉 we have
d(u,v) ≥ 0 and equals zero if and only if u − v = 0, if
and only if u = v.

b) This follows since 〈−x,−x〉 = 〈x,x〉 for any vector
x.

c) d(u,w) =‖ u−w ‖=‖ (u− v) + (v −w) ‖

≤‖ u−v ‖ + ‖ v−w ‖= d(u,v)+d(v,w) by Theorem
(5.5).

13. Denote the 2 × 2 identity by I2 and the 2 × 2 all one
matrix by J2. Easy calculations give ‖ I2 ‖=

√
2,

‖ J2 ‖= 2
√
2 and 〈I2, J2〉 = 2. Thus,

〈I2, J2〉
‖ I2 ‖‖ J2 ‖

=
2√

22
√
2
=

2

4
=

1

2
.

The angle is π
3 .

14. If ‖ u + v ‖=‖ u ‖ + ‖ v ‖ then u ⊥ v. Then
(cu) ⊥ (dv). Then by the general Pythagorean theorem

‖ cu+dv ‖2=‖ cu ‖2 + ‖ dv ‖2= c2 ‖ u ‖2 +d2 ‖ v ‖2 .

15. It is a consequence of the assumption that ‖ u ‖1=

‖ u ‖2 for all vectors u. Then ‖ u+ v ‖21=

‖ u+ v ‖22 . It then follows that

2〈u,v〉1 = 2〈u,v〉2

and so we get that 〈 , 〉1 and 〈 , 〉2 are identical.

16. Let a be the scalar such that z = y−ax is orthogonal
to x. Then y = ax+z and 〈y,y〉 = 〈ax+z, ax+z〉 =
|a|2 + 〈z, z〉 ≥ a2. On the other hand, 〈y,x〉〈x,y〉 =

〈ax+ z,x〉〈x, ax+ z〉 = aa = |a|2.

5.3. Orthonormal Sets and the
Gram-Schmidt Process

1. x2 = w2 − 〈w2,x1〉
〈x1,x1

x1. Then

〈x2,x1〉 = 〈w2 −
〈w2,x1〉
〈x1,x1

x1,x1〉 =

〈w2,x1〉 −
〈w2,x1〉
〈x1,x1〉

〈x1,x1〉 =

〈w2,x1〉 − 〈w2,x1〉 = 0.

2. x3 = w3 − 〈w3,x1〉
〈x1,x1〉x1 − 〈w3,x2〉

〈x2,x2〉x2.

Making use of additivity and homogeneity in the first ar-
gument and the fact that x1 ⊥ x2 we get

〈w3,x1〉 = 〈w3 −
〈w3,x1〉
〈x1,x1〉

x1 −
〈w3,x2〉
〈x2,x2〉

x2,x1〉 =

〈w3,x1〉−
〈w3,x1〉
〈x1,x1〉

〈x1,x1〉 = 〈w3,x1〉−〈w3, x1〉 = 0.

〈w3,x2〉 is computed in exactly the same way.

3. Let u ∈ U and x ∈ W⊥. Since U ⊂ W,u ⊥ x.

Since u is arbitrary, x ∈ U⊥. Since x is arbitrary we
have W⊥ ⊂ U⊥.

4. Let (w1, . . . ,wk) be basis for W and extend to a basis
(w1, . . . ,wn) for V. Apply the Gram-Schmidt process to
obtain an orthonormal basis (x1, . . . ,xn) such that for all
j ≤ n, Span(x1, . . . ,xj) = Span(w1, . . . ,wj). Then,
in particular, (x1, . . . ,xk) is an orthonormal basis of W.
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5.3. Orthonormal Sets and the Gram-Schmidt Process 51

Clearly Span(wk+1, . . . ,wn) is contained in W⊥ and
has dimension n − k. Thus, dim(W⊥) ≥ n − k. Since
W ∩W⊥ = {0}, dim(W⊥) ≤ n − k. Consequently we
have equality.

5. This follows from the fact that W ∩ W⊥ = {0} and
dim(W ) + dim(W⊥) = n.

6. Assume dim(V ) = n, dim(W ) = k. Then
dim(W⊥) = n−k by Theorem (5.11). By another appli-
cation of Theorem (5.11) we get that dim((W⊥)⊥) = k.

On the other hand, W ⊂ (W⊥)⊥. Since they have the
same dimension we get equality.

7. Let x = u +w ∈ U +W and y ∈ U⊥ ∩W⊥. Then
〈x,y〉 = 〈u + w,y〉 = 〈u,y〉 + 〈w,y〉 = 0 + 0 = 0.

Thus, U⊥ ∩W⊥ ⊂ (U +W )⊥.

On the other hand, since U ⊂ U + W, (U + W )⊥ ⊂
U⊥ by Exercise 3. Similarly, (U + W )⊥ ⊂ W⊥. Thus
(U +W )⊥ ⊂ U⊥ ∩W⊥ and we have equality.

Now apply the first part to U⊥ +W⊥:

(U⊥ +W⊥)⊥ = (U⊥)⊥ ∩ (W⊥)⊥ = U ∩W.

It now follows from Exercise 6 that (U ∩W )⊥ = U⊥ +

W⊥.

8. For each j, Span(w1, . . . ,wj) = Span(v1, . . . ,vj).

This implies that [wj ]B′ has the form




a1j
...

ajj
0
...
0




. Therefore,

the change of basis matrix from B to B′,MIV (B,B′) is
upper triangular. Reversing the roles of the bases, it also
follows that MIV (B′,B) is upper triangular.

9. (1, x− 1
2 , x

2 − x+ 1
6 ).

10. Extend (v1, . . . ,vk) to an orthonormal basis of V. Set
〈u,vi〉 = ci so that u = c1v1 + · · ·+ cnvn. Then

k∑
i=1

|〈u,vi〉|2 =

k∑
i=1

|ci|2.

On the other hand

‖ u ‖2=
n∑

i=1

|ci|2 ≥
k∑

i=1

|ci|2.

We get equality if and only if ck+1 = · · · = cn = 0 which
occurs if and only if u is in the span of (v1, . . . ,vk).

11. J⊥
2 consists of all matrices

(
a b

c d

)

such that a + b + c + d = 0 and has basis

(

(
1 −1

0 0

)
,

(
1 0

−1 0

)
,

(
1 0

0 −1

)
). Applying Gram-

Schmidt to this basis we obtain the following orthogonal
basis:

(

(
1 −1

0 0

)
,

(
1
2

1
2

−1 0

)
,

(
1
3

1
3

1
3 −1

)
).

The first matrix has norm
√
3 the second has norm

√
3
2

and the last has norm
√

4
3 . Dividing the respective vectors

by these numbers gives an orthonormal basis.

12. Set ai = 〈x,vi〉, bi = 〈y,vi〉. Since (v1, . . . ,vn)is
an orthonormal basis we have

x =
n∑

i=1

aivi,y =
n∑

i=1

bivi.

Again, since (v1, . . . ,vn) is an orthonormal basis,

〈x,y〉 =
n∑

i=1

aibi =

n∑
i=1

〈x,vi〉〈y,vi〉.
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5.4. Orthogonal Complements
and Projections

1. ProjW (u) =




2

3

2

3


 , P rojW⊥(u) =




−1

−1

1

1




2. ProjW (J2) =

(
0 1

1 0

)
, P rojW⊥(J2) =

(
1 0

0 1

)

3. ProjW (x3) = 3
2x

2 − 3
5x+ 1

20 .

4. 5
3 .

5.
√
30
3

6. 2
√
15
5

7. 1
35 (−20x2 + 48x+ 6).

8. Extend B to an orthonormal basis B′ = (w1, . . . ,wn).

We need to show that Q[wi]S = [wi]S for i ≤ k and
0n if i > k. Since S is an orthonormal basis, for any
two vectors u,v we have 〈u,v〉 = [u]S · [v]S . Now for
1 ≤ i < j ≤ k we have 〈wi,wj〉 = 0 which implies
that [wi]S · [wj ]S = 0 and [wi]S · [wi]S = 1. This im-
plies that Atr[wi]S = ei the ith standard basis vector of
Rn. Whence Q[wi]S = AAtr[wi]S = Aei = [wi]S as
required. On the other hand, if 1 ≤ i ≤ k, k + 1 ≤ j ≤ n

then Atr[wj ]S = 0n and, consequently, Q[wj ]S = 0n.

9. Qtr = (AAtr)tr = (Atr)trAtr = AAtr = Q, so
Q is symmetric. Let v ∈ V and write v = w + u where
w ∈ W,u ∈ W⊥. Then Proj2W (v) = ProjW (w+u) =

ProjW (w) = w = ProjW (v). It follows from this that
Q2 = Q since Q is the matrix of ProjW with respect to
S.

10. Let u,v be in V. As stated in Exercise 8, 〈u,v〉 =

[u]S · [v]S . Now suppose w ∈ W = Range(T ) and
u ∈ Ker(T ). We claim that 〈w,u〉 = 0. By the above
remark it suffices to show that [w]S · [u]S = 0 which is
equivalent to [w]trS [u]S = 0. Since w ∈ Range(T ) there
exists a vector v ∈ V such that w = T (v). Then [w]S =

[T (v)]S = Q[v]S . Since u ∈ Ker(T ), Q[u]S = 0n. We
now use this to compute [w]trS [u]S = 0 :

[w]trS [u]S = (Q[v]S)
tr[u]S = [v]trQtr[u]S

= [v]trS (Q[u]S) = [v]trS 0n = 0n.

It now follows that W ′ = Ker(T ) ⊂ W⊥. However, by
the rank nullity theorem dim(W ′) = n − dim(W ). By
Theorem (5.11), dim(W⊥) = n−dim(W ) and therefore
W ′ = W⊥.

Now let w ∈ W. It remains to show that T (w) = w.

Since Q2 = Q it follows that T 2 = T. Let u ∈ V such
that T (u) = w. Then T (w) = T 2(u) = T (u) = w.

11. Assume W ⊥ U and let v ∈ V. Set w = ProjW (v).

Then w ∈ W. Since w ⊥ U it follows that ProjU (w) =

0. Conversely, assume ProjU ◦ ProjW = 0V→V . Let
w ∈ W. Then ProjW (w) = w. Then ProjU (w) = 0

which implies that w ∈ Ker(ProjU ) = U⊥. Since w is
arbitrary we have W ⊂ U⊥ and therefore W ⊥ U.

12. Let w ∈ W,v ∈ W⊥ such that u = w + v.

Then ProjW (v) = w and 〈ProjW (u), P rojW (u)〉 =

〈w,w〉. On the other hand, since w ⊥ v by the
Pythagorean theorem 〈u,u〉 = 〈w + v,w + v〉 =

〈w,w〉 + 〈v,v〉 ≥ 〈w,w〉. Moreover, we get equality
if and only if v = 0 if and only if u = w ∈ W.

13. Let w ∈ W,v ∈ W⊥ such that u = w + v.

Then dist(u,W ) = 〈v,v〉. By the Pythagorean theorem,
〈u,u〉 = 〈w + v,w + v〉 = 〈w,w〉 + 〈v,v〉 ≥ 〈v,v〉.
Moreover, we have equality if and only if w = 0 if and
only if u = v ∈ W⊥.

5.5. Dual Spaces

1.




1 2 1 2

2 3 1 3

1 0 0 1

0 1 2 1


 is invertible with inverse
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


−5 3 0 1

−1 1 −1 0

−2 1 0 1

5 −3 1 −1


 . This implies that the sequence

of column vectors are a basis for R4.

Set

g1 = −5f1 + 3f2 + f4

g2 = −f1 + f2 − f3

g3 = −2f1 + f2 + f4

g4 = 5f1 − 3f2 + f3 − f4

(g1, g2, g3, g4) is the basis of (R4)′ which is dual to B.

2. Since dim(L(V,W )) = dim(L(W ′, V ′)) it suffices to
show that the map T → T ′ is injective. Let T ∈ L(V,W )

be a non-zero map. We need to show that T ′ is non-zero.
Since T is non-zero there exists v ∈ V such that w =

T (v) �= 0W . Extend w to a basis (w = w1, . . . ,wm)

for W. Define g : W → F by g(
∑m

i=1 ciwi) = ai. Now
[T ′(g)](v) = [g ◦ T ](v) = g(T (v)) = g(w) = 1. Thus,
T ′(g) �= 0W ′ .

3. Assume T is one-to-one and let f ∈ V ′ be non-zero.
Let (v1, . . . ,vn−1) be a basis for Ker(f) and extend to a
basis (v1, . . . ,vn) for V such that f(vn) = 1. Set wi =

T (vi), 1 ≤ i ≤ n. Since T is one-to-one, (w1, . . . ,wn)

is linearly independent. Extend to a basis (w1, . . . ,wm)

fo W. Define g : W → F by g(
∑m

i=1 aiwi) = a1. Then
T ′(g)(v1) = (g ◦ T )(v1) = g(T (v1)) = g(w1) = 1.

Also, for i > 1, T ′(g)(vi)(g ◦ T )(vi) = g(T (vi)) =

g(wi) = 0. Thus, T ′(g) = f and T ′ is onto.

Conversely, assume that T ′ is onto and let v ∈ V be a
non-zero vector. Let (v = v1, . . . ,vn) be a basis of V.
And let f : V → F be defined by f(

∑n
i=1 aivi) = a1.

Since T ′ is onto there exists g ∈ W ′ such that T ′(g) = f.

Then (T ′(g))(v) = f(v) = 1. Whence g(T (v)) = 1

which clearly inplies that T (v) �= 0W . Since v is arbi-
trary we can conclude that Ker(T ) = {0V } and T is
injective.

Now assume that T is onto and let g ∈ W ′ be non-zero.
Then there exists w ∈ W such that g(w) = 1. Let (w =

w1, . . . ,wm) be a basis for W such that (w2, . . . ,wm)

is a basis for Ker(g). Since T is onto, there exists v ∈
V such that T (v) = w. Now [T ′(g)](v) = g(T (v)) =

g(w) = 1. In particular, T ′(g) is not the zero vector in
V ′, equivalently, g is not in Ker(T ′). Since g is arbitrary
in W ′ it follows that T ′ is injective.

Conversely, assume that Range(T ) �= W. Let
(w1, . . . ,wk) be a basis for Range(T ) and extend this to
a basis (w1, . . . ,wm) for W. Now define g : W → F by
g(
∑m

i=1 aiwi = am. Note that Range(T ) ⊂ Ker(T ).

This implies that T ′(g) = 0V ′ and therefore T ′ is not
one-to-one.

4. This follows immediately from Exercise 3.

5. Set k = rank(T ) and let (w1, . . . ,wk) be a basis for
Range(T ). Extend to a basis BW = (w1, . . . ,wm) for
W and let BW ′ = (g1, . . . , gm) be the basis of W ′ dual
to BW . We claim that (T ′(g1), . . . , T

′(gk)) is a basis for
Range(T ′).

Suppose j > k. Then Range(T ) ⊂ Ker(gj)

and therefore T ′(gj) = 0V ′ . Thus, Range(T ′) ⊂
Span(T ′(g1), . . . , T

′(gk)). Since each T ′(gi) is in
Range(T ′) we have equality. It remains to show that
(T ′(g1), . . . , T

′(gk)) is linearly independent.

For 1 ≤ i ≤ k let vi ∈ V such that T (vi) =

wi. Then (v1, . . . ,vk) is linearly independent since
(T (v1), . . . , T (vk)) = (w1, . . . ,wk) is linearly inde-
pendent. Extend to a basis BV = (v1, . . . ,vn) where
(vk+1, . . . ,vn) is a basis for Ker(T ). Let BV ′ =

(f1, . . . , fn) be the basis of V ′ which is dual to BV . We
claim that T ′(gi) = fi from which the result will follow.

Suppose j > k. Then vj ∈ Ker(T ) and [T ′(gi)](vj) =

0. Suppose j ≤ k, j �= i. Then [T ′(gi)](vj) =

gi(T (vj)) = gi(wj) = 0. Finally, [T ′(gi)](vi) =

gi(T (vi)) = gi(wi) = 1.
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6. Assume dim(V ) = n, dim(W ) = m and rank(T ) =

k. By the rank-nullity theorem, nullity(T ) = n − k. By
Exercise 5, rank(T ′) = k. Again by the rank-nullity
theorem, nullity(T ′) = m − k. Thus, nullity(T ) =

nullity(T ′) if and only if n − k = m − k if and only
if n = m.

7. Let v �= 0V and (v = v1, . . . ,vn) be a basis for
V and (g1, . . . , gn) the basis of V ′ dual to (v1, . . . ,vn).

Then g1(v) = 1. Since (f1, . . . , fn) is a basis for V ′ there
exists scalars c1, . . . , cn such that

g = c1f1 + · · ·+ cnfn.

Then 1 = g(v) = c1f1(v) + . . . cnfn(v). This implies
for some i, fi(v) �= 0. It then follows that T (v) �= 0n.

Thus, T is injective whence an isomorphism by the half is
good enough theorem.

8. Since T is an isomorphism by Exercise 4, T ′ is an
isomorphism. Since (π1, . . . , πn) is a basis for (Fn)′ we
can conclude that (T ′(π1), . . . , T

′(πn)) = (f1, . . . , fn)

is a basis for V ′.

9. We give an indirect proof. We first establish the exis-
tence of a natural isomorphism between V and (V ′)′.

Thus, let v ∈ V. Define a map Fv : V ′ → F by
Fv(f) = f(v). Claim that the map v → Fv is a linear
transformation.

Let v,w ∈ V. We need to prove that Fv+w = Fv + Fw.

Let f ∈ V ′. Then Fv+w(f) = f(v + w) = f(v) +

f(w) = Fv(f) + Fw(f) = (Fv + Fw)(f).

Now let v ∈ V, c ∈ F. We need to prove that Fcv = cFv.

Now for f ∈ V ′ we have Fcv(f) = f(cv) = cf(v) =

cFv(f) = (cFv)(f).

Now let v ∈ V be non-zero. We have oftentimes seen that
there exists f ∈ V ′ such that f(v) �= 0. Then Fv(f) =

f(v) �= 0. Therefore the linear map v → Fv has trivial
kernel and is injective. Since dim(V ) = dim((V ′), in
fact, this map is an isomorphism.

Now let (F1, . . . , Fn) be the basis of (V ′)′ which is dual
to (f1, . . . , fn) and let (x1, . . . ,xn) be the basis of V

such that Fxi
= Fi. This sequence satisfies the require-

ments of the exercise.

10. Suppose f, g ∈ U ′, c ∈ F and u ∈ U. Then (f +

g)(u) = f(u) + g(u) = 0 + 0 = 0. Since u ∈ U is
arbitrary, U ⊂ Ker(f + g).

(cf)(u) = c[f(u)] = c × 0 = 0. Thus, U ⊂ Ker(cf)

and U⊥ is a subspace of V ′.

Let (u1, . . . ,uk) be a basis for U and extend to a basis
B = (u1, . . . ,un) for V. Let (g1, . . . , gn) be the basis of
V ′ which is dual to B. Then U⊥ = Span(gk+1, . . . , gn)

and has dimension n− k.

11. Since U,W ⊂ U+W it follows that if f ∈ (U+W )′

then f ∈ U ′ ∩W ′. On the other hand, suppose f ∈ U ′ ∩
W ′ and v ∈ U +W. Then there are u ∈ U,w ∈ W such
that v = u + w. Then f(u + w) = f(u) + f(w) =

0 + 0 = 0 and f ∈ (U +W )′. Thus, we have equality.

Now suppose f ∈ U ′, g ∈ W ′ and v ∈ U ∩ W. Then
(f + g)(v) = f(v) + g(v) = 0 + 0 = 0. Thus,
f + g ∈ (U ∩ W )′. This shows that U ′ + W ′ ⊂ (U ∩
W )′. We complete this with a dimension argument. Let
dim(U) = k, dim(W ) = l and dim(U ∩W ) = j. Then
dim(U + W ) = k + l − j. From Exercise 10 it follows
that dim((U +W )⊥) = n − k − l + j. By the first part,
U ′∩W ′ = (U+W )′. Thus, dim(U ′∩W ′) = n−k−l+j.

Again by Exercise 10, dim(U ′) = n − k, dim(W ′) =

n− l. Then

dim(U ′+W ′) = dim(U ′)+dim(W ′)−dim(U ′∩W ′) =

(n−k)+(n−l)−(n−k−l+j) = n−j = dim((U∩W )′).

12. Clearly π is linear and injective. Since dim((U ⊕
W )′) = dim(U ⊕ W ) = dim(U) + dim(W ) =

dim(U ′) + dim(W ′) = dim(U ′ ⊕W ′), π is an isomor-
phism.

13. Let f ∈ L(X,F). Then (S ◦ T )′(f) = (S ◦ T ) ◦ f =

S ◦ (T ◦ f) = S′(T ′(f)) = (S′ ◦ T ′)(f).
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14. Let f ∈ U ′ and u ∈ U. Then [T ′(f)](u) = f(T (u)).

Since U is T−invariant and u ∈ U, T (u) ∈ U. Since f ∈
U ′ we conclude that f(T (u)) = 0. Since u is arbitrary,
T ′(f) ∈ U ′.

15. Let B = (v1, . . . ,vn) be a basis for V and
B′ = (f1, . . . , fn) be the basis of V ′ dual to B. Then
MT ′(B′,B′) = MT (B,B)tr. It follows from this that
the operators T ∈ L(V, V ) and T ′ ∈ L(V ′, V ′) have the
same minimum polynomial (and elementary divisors and
invariant factors).

16i) Suppose g ∈ Ker(T ′) and w = T (v). Then
g(w) = g(T (v)) = [T ′(g)[v] = 0. Since w is arbitrary,
g ∈ Range(T )′ and Ker(T ′) ⊂ Range(T )′. On the
other hand, suppose g ∈ Range(T )′. Let v ∈ V. Then
[T ′(g)](v) = g(T (v)). Since T (v) ∈ Range(T ) and
g ∈ Range(T )′ we have g(T (v)) = 0. Since v ∈ V is
arbitrary, T ′(g) is the zero vector in V ′ and g ∈ Ker(T ′).

Thus, we have equality.

ii) Assume f = T ′(g) ∈ Range(T ′) and v ∈ Ker(T ).

Then f(v) = [T ′(g)](v) = g(T (v)) = g(0W ) = 0.

Thus, f ∈ Ker(T )′. Now we can complete this with di-
mension arguments: By Exercise 5, dim(Range(T ′)) =

dim(Range(T )). By Exercise 10, dim(Ker(T )′) =

dim(V )− dim(Ker(T )) = dim(Range(T )).

iii) Let v ∈ Ker(T ) and f = T ′(g). Then f(v) =

[T ′(g)](v) = g(T (v)) = g(0W ) = 0. Since f and v are
arbitrary we have Ker(T ) ⊂ Range(T ′)′. Once again
we get equality by a dimension argument.

iv) Let w = T (v) and g ∈ Ker(T ′). Then g(w) =

g(T (v)) = [T ′(g)](v) = 0 since T ′(g) is the zero vector
in V ′. This implies that Range(T ) ⊂ Ker(T ′)′. Equality
follows from dimension arguments.

5.6. Adjoints

1.




2

3

−1




2. −420x2 + 396x− 60.

3.
(
1 0

0 −1

)

4. Let v ∈ V and x ∈ X. Then

〈(TS)(v),x〉X = 〈v, (TS)∗(x)〉V

On the other hand,

〈(TS)(v),x〉X = 〈T (S(v)),x〉X =

〈S(v), T ∗(x)〉W = 〈v, S∗(T ∗(x))〉V

Thus, for all v ∈ V and x ∈ X we have

〈v, (TS)∗(x)〉V = 〈v, (S∗T ∗)(x)〉V

This implies that (TS)∗(x) = (S∗T ∗)(x) for all x ∈ X

whence (TS)∗ = S∗T ∗.

5. Let v ∈ V,w ∈ W. Then

〈T (v),w〉V = 〈v, T ∗(w)〉V =

〈(T ∗)∗(v),w〉W .

Since this holds for all w ∈ W we must have (T ∗)∗(v) =

T (v) for all v ∈ V whence (T ∗)∗ = T.

6. Assume T (u) = λu. Then for all v ∈ V we have

〈(T − λ)(u),v〉 = 0.

This implies that

〈u, (T − λIV )
∗(v)〉 = 〈u, (T ∗ − λIV )(v)〉 = 0.

This implies that Range(T −λIV ) ⊂ u⊥ is a proper sub-
space of V. It must then be the case that Ker(T −λIV ) �=
{0} which implies that there exists an eigenvector with
eigenvalue λ.
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56 Chapter 5. Inner Product Spaces

7. Let w ∈ W and assume that T ∗(w) = 0V . Then for
all v ∈ V

〈v, T ∗(w)〉V = 0.

Using the definition of T ∗ we have for all v ∈ V that

〈T (v),w〉W = 0

Since T is invertible, in particular, Range(T ) = W. This
implies that w = 0W and consequently, T ∗ is injective,
whence invertible. Exercise 3 applied to TT−1 = IV =

T−1T yields (T ∗)−1 = (T−1)∗.

8. Suppose (T ∗T )(v) = 0V . It then follows that by the
definition of T ∗ that

〈(T (v), T (v)〉W = 〈v, (T ∗T )(v)〉V = 0.

Since 〈 , 〉W is positive definite we can conclude that
T (v) = 0W . However, T injective implies that v = 0V .

Thus, T ∗T is injective. Since V is finite dimensional it
follows that T ∗T is bijective.

9. It follows from part i) of Theorem (5.22), if T :

V → W is surjective then T ∗ is injective. By Exer-
cise 5, (T ∗)∗ = T. Now it follows from Exercise 8 that
TT ∗ : W → W is bijective.

10. Let u ∈ U and w ∈ U⊥. Since U is T−invariant we
have

〈T (u),w〉 = 0.

Making use of the definition of T ∗ we then get for all
u ∈ U

〈u, T ∗(w)〉 = 0.

This implies that T ∗(w) ∈ U⊥.

11. Suppose (T ∗T )(v) = 0. Then

〈T (v), T (v)〉 = 〈v, T ∗(T (v))〉 = 0.

By positive definiteness we have T (v) = 0.

12. S∗(x,y) = (−y,x).

13. Let BV be an orthonormal basis of V and BW be
an orthonormal basis of W. Set A = MT (BV ,BW ) and
A∗ = MT∗(BW ,BV ). By Theorem (5.23), A∗ = A

tr
.

Since rank(T ) = rank(A), rank(T ∗) = rank(A∗)

and rank(A) = rank(A
tr
) it follows that rank(T ) =

rank(T ∗).

14. Assume S exists. Then 1 = 〈v1,v1〉 =

〈v1, S
∗(y)〉 = 〈S(v1),y〉 = 〈x,y〉. This proves that

〈x,y〉 = 1. Conversely, assume 〈x,y〉 = 1. Let
(x2, . . . ,xn) be a basis for y⊥. Since 〈x,y〉 = 1 �= 0,
x /∈ y⊥ so that (x,x2, . . . ,xn) is linearly indepen-
dent. Set x1 = x and define S : V → V so that
S(vi) = xi. Then S is invertible and S(v1) = x1 = x.
It remains to show that S∗(y) = v1. Let 2 ≤ j ≤ n.
Then 0 = 〈S(vj),y〉 = 〈vj , S

∗(y)〉. Consequently,
S∗(y) = Span(v2, . . . ,vn)

⊥ = Span(v1)
⊥. There is

then a scalar α such that S∗(y) = αv1. However, 1 =

〈x,y〉 = 〈S(v1),y〉 = 〈v1, S
∗(y)〉 = 〈v1, αv1〉 = α.

Thus, α = 1 as required.

5.7. Normed Vector Spaces

1. a) ‖




−4

2

−1

−2


 ‖1= 9, ‖




−4

2

−1

−2


 ‖2= 5, ‖




−4

2

−1

−2


 ‖∞=

4.

b) ‖




3

−6

0

2


 ‖1= 11, ‖




3

−6

0

2


 ‖2= 7, ‖




3

−6

0

2


 ‖∞= 6.

2. Let x =




−4

2

−1

2


 ,y =




3

−6

0

2


. Then x−y =




−7

8

−1

0


.

Then d1(x,y) =‖ x−y ‖1= 16, d2(x,y) =‖ x−y ‖2=√
114, d∞(x,y) =‖ x− y ‖∞= 8.

3. 1
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4. 1) If x = y then d(x,y) =‖ 0 ‖= 0. On the other
hand, if d(x,y) = 0 then ‖ x−y ‖= 0, whence x−y =

0 so x = y.

2) This holds since d(y,x) =‖ y − x ‖=‖ (−1)(x −
y) ‖= | − 1| ‖ x− y ‖=‖ x− y ‖= d(x,y).

3) d(x, z) =‖ x−z ‖ = ‖ (x−y)+(y−z) ‖ ≤ ‖
x− y ‖ + ‖ y − z ‖= d(x,y) + d(y, z).

5. Let x =



x1

...
xn


 ,y =



y1
...
yn


. If x = 0 then clearly

‖ x ‖∞= max{|x1|, . . . , |xn|} = 0. On the other hand if
‖ x ‖∞= max{|x1|, . . . , |xn|} = 0 then xi = 0 for all i
and x = 0.

Let c be a scalar. Then ‖ cx ‖∞=

max{|cx1|, . . . , |cxn|} = max{|c||x1|, . . . , |c||xn|} =

|c|max{|x1|, . . . , |xn|} = |c| ‖ x ‖∞.

Now ‖ x+y ‖∞= max{|x1+y1|, . . . , |xn+yn|}. Now
|xi + yi| ≤ |xi| + |yi| ≤‖ x ‖∞ + ‖ y ‖ −∞. Conse-
quently, max{|x1 + y1|, . . . , |xn + yn|} ≤‖ x ‖∞ + ‖
y ‖∞.

6. Let B2
r (x) denote the open ball centered at x with

radius r with respect to the l2-norm and B∞
r (x) the open

ball centered at x with radius r with respect to the l∞-
norm. We must show the following: i) For an arbitrary
point y ∈ B2

r (0) there is a positive s such that B∞
s (y) ⊂

B
(
r0); and ii) For an arbitrary point z ∈ B∞

r (0) there is a
positive t such that B2

t (z) ⊂ B∞
r (0).

i) Set s = r−‖y‖2

2
√
2

. Suppose u ∈ B∞
s (y). Then ‖ u ‖2=‖

y+(u−y) ‖2≤‖ y ‖2 + ‖ u−y ‖2. If y =

(
y1
y2

)
,u =

(
u1

u2

)
then ‖ u− y ‖22= (u1 − y1)

2 + (u2 − y2)
2 < 2s2

=
(r− ‖ y ‖)2

4

Consequently, ‖ u−y ‖≤ r−‖y‖2

2 . Then, ‖ u ‖2≤‖ y ‖2
+ r−‖y‖2

2 = r+‖y‖2

2 < r.

ii) Assume z =

(
z1
z2

)
∈ B∞

r (0). Set t = r−‖z‖∞
2 and

assume v =

(
v1
v2

)
∈ B2

t (z). We need to prove that

v ∈ B∞
r (0). Now ‖ v ‖∞=‖ z + (v − z) ‖∞≤‖ z ‖∞

+ ‖ v − z ‖∞. Note that ‖ v − z ‖∞≤‖ v − z ‖2.
Therefore, ‖ v ‖∞≤‖ z ‖∞ + r−‖z‖∞

2 = r+‖z‖∞
2 < r.

7. Let {xk}∞k=1 be a Cauchy sequence with respect to

the l1-norm. Assume xk =



x1k

...
xnk


. We claim for each

i, 1 ≤ i ≤ n that {xik}∞k=1 is a Cauchy sequence in R of
C. Thus, let ε be a positive real number. Since {xk}∞k=1 is
a Cauchy sequence with respect to the l1-norm there exists
a natural number N = N(ε) such that if p, q ≥ N then
‖ xq −xp ‖1< ε. Since ‖ xq −xp ‖1=

∑n
i=1 |xiq −xip|

it follows for each i, 1 ≤ i ≤ n and p, q ≥ N that |xiq −
xip| < ε as required. Since R and C are complete we can
conclude for each i the sequence {xik}∞k=1 converges. Set

xi = limk→∞ xik and set x =



x1

...
xn


. We claim that

limk→∞ xk = x. Toward that objective, assume ε is a
positive real number. Since limk→∞ xik = xi there is a
natural number Mi such that if k ≥ Mi then |xi − xik| <
ε
n . Now set M = max{M1, . . . ,Mn} and suppose k ≥
M . Then k ≥ Mi so that |xi − xik| < ε

n and therefore
‖ x − xk ‖1=

∑n
i=1 |xi − xik| < n × ε

n = ε so that
limk→∞ xk = x as claimed.

8. Let {xk}∞k=1 be a Cauchy sequence with respect to

the l∞-norm. Assume xk =



x1k

...
xnk


. We claim that for

each i, 1 ≤ i ≤ n that {xik}∞k=1 is a Cauchy sequence
in R or C. Thus, let ε be a positive real number. Since
{xk}∞k=1 is a Cauchy sequence with respect to the l∞-
norm there exists a natural number N = N(ε) such that if
p, q ≥ N then ‖ xq − xp ‖∞< ε. Since ‖ xq − xp ‖∞=

max{|x1q − x1p, . . . , |xnq − xnp|} we can conclude for
each i, 1 ≤ i ≤ n and p, q ≥ N that |xiq − xip| < ε
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58 Chapter 5. Inner Product Spaces

establishing our claim. Since R and C are complete we
can conclude for each i the sequence {xik}∞k=1 converges.

Set xi = limk→∞ xik and set x =



x1

...
xn


. We claim that

limk→∞ xk = x. Toward that objective, assume ε is a
positive real number. Since limk→∞ xik = xi there is a
natural number Mi such that if k ≥ Mi then |xi − xik| <
ε. Now set M = max{M1, . . . ,Mn} and assume that
k ≥ M . Then k ≥ Mi so that |xi−xik| < ε. Since this is
true for each i, 1 ≤ i ≤ n it follows that ‖ x − xk ‖∞=

max{|x1 − x1k|, . . . |xn − xnk|} < ε so that, indeed,
limk→∞ xk = x.

9. i) The relation fo equivalence is reflexive: Take c =

d = 1.

ii) The relation of equivalence is symmetric: Assume ‖ · ‖
is equivalent to ‖ · ‖′ and let c, d be positive real numbers
such that for every x, c ‖ x ‖′≤‖ x ‖≤ d ‖ x ‖′. Then
1
d ‖ x ‖≤‖ x ‖′≤ 1

c ‖ x ‖ for every x.

iii) The relation of equivalence is transitive: Assume ‖ · ‖
is equivalent to ‖ · ‖′ and ‖ · ‖′ is equivalent to ‖ · ‖∗.
Let a, b be positive real numbers such that for every x,
a ‖ x ‖′≤‖ x ‖≤ b ‖ x ‖′ and let c, d be positive real
numbers such that for every x we have c ‖ x ‖∗≤‖ x ‖′≤
d ‖ x ‖∗.

Set e = ac and f = bd. Then for every x, e ‖ x ‖∗≤‖
x ‖≤ f ‖ x ‖∗.

10. ‖ e1 + e2 ‖2p=‖ e1 − e2 ‖2p= 2
2
p . Therefore

‖ e1 + e2 ‖2p + ‖ e1 − e2 ‖2p= 2× 2
2
p .

On the other hand, 2(‖ e1 ‖2p + ‖ e2 ‖2p) = 4.

If p = 2 then 2 × 2
2
p = 2 × 2 = 4 and we have equality.

Conversely, assume we have equality;

2× 2
2
p = 4

so that 2
2
p = 2 so that 2

p = 1 and p = 2, as asserted.

11. Let m = max{‖ e1 ‖, . . . , ‖ en ‖} and assume

x =



x1

...
xn


 is in S∞

1 . Then ‖ x ‖≤
∑n

i=1 ‖ xiei ‖

by the triangle inequality.
∑n

i=1 ‖ xiei ‖=
∑n

i=1 |xi| ‖
ei ‖≤

∑n
i=1 m|xi| ≤ nm since |xi| ≤ 1. Thus, S∞

1 is
bounded. It remains to show that it is S∞

1 is closed.
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Chapter 6

Linear Operators on Inner Product Spaces

6.1. Self-Adjoint Operators

1. This follows immediately since (S+T )∗ = S∗+T ∗ =

S + T.

2. (γT )∗ = γT ∗ = γT since γ ∈ R and T is self-adjoint.

3i) R∗ = [ 12 (T +T ∗)]∗ = 1
2 [T

∗+(T ∗)∗] = 1
2 [T

∗+T ] =

R.

S∗ = ( 12 i[−T + T ∗])∗ = 1
2 i[−T ∗ + (T ∗)∗] =

− 1
2 i[−T ∗ + T ] = 1

2 i[−T + T ∗] = S.

ii) R+ iS = 1
2 [T + T ∗] + 1

2 i
2[−T + T ∗] =

1
2 [T + T ∗]− 1

2 [−T + T ∗] =
1
2T + 1

2T
∗ + 1

2T − 1
2T

∗ = T.

iii) If T = R1 + iS1 is self-adjoint then
T ∗ = R∗

1,+(iS1)
∗ = R∗

1 + iS∗
1 = R1 − iS1.

Then T + T ∗ = 2R1, R1 = 1
2 [T + T ∗] = R. Then S1 =

T −R1 = T −R = S.

4. T ∗ = R− iS. Suppose RS = SR. Then

TT ∗ = (R+ iS)(R− iS) =

R2 + (iS)R−R(iS) + S2 = R2 + S2 =

(R− iS)(R+ iS) = T ∗T

and so T is normal.

Conversely, assume that T is normal so that TT ∗ = T ∗T.

Then

TT ∗ = R2 + i[SR−RS] + S2 =

T ∗T = R2 + i[RS − SR] + S2.

It follows that SR − RS = RS − SR from which we
conclude that 2SR = 2RS, SR = RS.

5. The dimension is n2 as a real vector space.

6. Assume (ST )∗ = ST. (ST )∗ = T ∗S∗ = TS. Thus,
TS = ST. On the other hand, assume ST = TS. Then
(ST )∗ = T ∗S∗ = TS = ST.

7. Let B = (v1, . . . ,vn) be an orthonormal basis for V.
Let S(vj) = T (vj) = vj for 3 ≤ j ≤ n. Set S(v1) =

v2, S(v2) = v1;T (v1) = v1 +2v2, T (v2) = 2v1 +3v2.

Since MS(B,B),MT (B,B) are real symmetric the op-
erators S and T are self-adjoint by Theorem (6.1). How-
ever, MST (B,B) �= MTS(B,B).

8. ‖ T (v) ‖2= 〈T (v), T (v)〉 = 〈v, T ∗T (v)〉.
Since T is normal, 〈v, T ∗T (v)〉 = 〈v, TT ∗(v)〉 =

〈T ∗(v), T ∗(v)〉 =‖ T ∗(v) ‖2.

9. This follows from Exercise 8.

10. By Exercise 9 we have Ker(T ) = Ker(T ∗). Then
Range(T ∗) = Ker(T )⊥ = Ker(T ∗)⊥ = Range(T )

by Theorem (5.22).

11. If TT ∗ = T 2 then for v ∈ V, 〈v, TT ∗(v)〉 =

〈v, T 2(v)〉. This implies that 〈T ∗(v), T ∗(v)〉 =

〈T ∗(v), T (v)〉 from which we conclude that

K23692_SM_Cover.indd   67 02/06/15   3:11 pm



60 Chapter 6. Linear Operators on Inner Product Spaces

〈T ∗(v), T ∗(v) − T (v)〉 = 0 for all v ∈ V. Sup-
pose T (v) = 0. Then 〈T ∗(v), T ∗(v)〉 = 0 so
that by positive definiteness, T ∗(v) = 0. Thus,
Ker(T ) ⊂ Ker(T ∗). However, by Exercise 13
of Section (5.6), rank(T ) = rank(T ∗). Then
nullity(T ) = nullity(T ∗). This implies that
Ker(T ) = Ker(T ∗).

Set U = Ker(T ) = Ker(T ∗). By Theorem (5.22),
Range(T ) = Ker(T ∗)⊥ = Ker(T )⊥ = Range(T ∗).

Set W = Range(T ). Note that U ∩ W = U ∩
U⊥ = {0}. Since dim(U) + dim(U⊥) = dim(V )

we have V = U ⊕ W. Let S be T restricted to
W = Range(T ) = Range(T ∗). Note for u,w ∈
W, 〈S(u),w〉 = 〈T (u),w〉 = 〈u, T ∗(w)〉 =

〈u, S∗(w)〉. Since T ∗(w) ∈ W it must be the case that
S∗ is the restriction of T ∗ to W. It now follows that
S2 = SS∗. Since S is invertible, S = S∗. We have
therefore shown that T restricted to W = Range(T )

is equal to T ∗ restricted to W. However, T restricted to
U = Ker(T ) is equal to T ∗ restricted to U (both are the
zero map). We can now conclude T = T ∗ and T is self-
adjoint.

12. Let U = Ker(T ) and assume that U is proper in V.

By Exercise 9, Ker(T ∗). = U Since U is T ∗−invariant
by Theorem (5.22) it follows that U⊥ is T−invariant.
Since T is nilpotent and T leaves U⊥ invariant, Ker(T|⊥U

)

is not just the zrero vector. But this contradicts U ∩U⊥ =

{0}. Thus, U = V.

13. (T − λIV )
∗ = T ∗ − λIV . Since T and T ∗ commute

and λIV and λIV commute with all operators, T − λIV
and T ∗ − λIV commute and T − λIV is normal.

14. i) implies ii). Assume T is normal. Then by Exercise
9, Ker(T ∗) = Ker(T ) = W. By Theorem (5,22), U =

Range(T ) = Ker(T ∗)⊥ = Ker(T )⊥ = W⊥.

ii) implies iii). Let BU be an orthonormal basis for
U and BW be an orthonormal basis for W. Also, set
k = dim(U), l = dim(W ). Then B = BU �BW is an
orthonormal basis for V. Let A denote MT (B,B) and
A∗ = MT∗(B,B).

Since T = Proj(U,W ), A =

(
Ik 0k×l

0l×k 0l×l

)
. Since A is

a real symmetric matrix, A∗ = A
tr

= A. Consequently,
T ∗ = T.

iii) implies i). A self-adjoint operator is always normal so
there is nothing to prove.

6.2. Spectral Theorems

1. Let α1, . . . , αs be the distinct eigenvalues of T and de-
note the minimum polynomial, µT (x) = (x−α1) . . . (x−
αs) of T by F (x) and set Fi(x) = F (x)

x−αi
. Also, let

Vi = {v ∈ V |T (v) = αiv} and Wi = V1⊕· · ·⊕Vi−1⊕
Vi+1 ⊕ · · · ⊕ Vs so that V = Vi ⊥ Wi.

Now (x − αi) and Fi(x) are relatively prime so there
are polynomials ai(x), bi(x) such that ai(x)(x − αi) +

bi(x)Fi(x) = 1. Now let vi ∈ Vi,wi ∈ Wi. Since
(T − αiIV )(vi) = 0 we have

bi(T )fi(T )(vi) =

[ai(T )(T − αiIV ) + bi(T )fi(T )](vi) =

IV (vi) = vi.

On the other hand

bi(T )Fi(T )(wi) = 0

Now set gi(x) = αibi(x)Fi(x). Then

gi(T )(vi) = αivi

gi(T )(wi) = 0.

Now set g(x) = g1(x) + · · ·+ gs(x). Then g(T ) = T ∗.

2. i) implies ii). Let α1, . . . , αs be the distinct eigen-
values of T and set Vi = {v ∈ V |T (v) = αiv}. Then
V = V1 ⊥ · · · ⊥ Vs. Note that the eigenvalues of T ∗ are

K23692_SM_Cover.indd   68 02/06/15   3:11 pm



6.2. Spectral Theorems 61

α1, . . . , αs and {v ∈ V |T ∗(v) = αiv} = Vi. Note that
every subspace of Vi is T− and T ∗−invariant.

Now let U be a T−invariant subspace and set Ui = U ∩
Vi. Then U = U1 ⊥ · · · ⊥ Us. It follows by the above
remark that each Ui is T ∗−invariant and therefore U is
T−invariant.

ii) implies iii). Assume U is T−invariant. By hypothesis,
U is T ∗-invariant. Then by Exercise 10 of Section (5.6)
U⊥ is T−invariant.

iii) implies i). Since U + U⊥ = V, U ∩ U⊥ = {0}.
This implies that T is completely reducible. Since the
field is the complex numbers this also implies that T is
diagonalizable. Now let α1, . . . , αs be the distinct eigen-
values of T and set Vi = {v ∈ V |T (v) = αiv}. We
then have that V = V1 ⊕ · · · ⊕ Vs. Further, let V ′

i denote
V1 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vs so that V = Vi ⊕ V ′

i .

Note that if X is a T−invariant subspace then X = X1⊕
· · · ⊕Xs where Xi = X ∩ Vi.

Now set W = V ⊥
j . Then W = W1 ⊕ · · · ⊕ Ws where

Wi = W ∩ Vi. However, Wj = W ∩ Vj = {0} and
therefore W ⊂ V ′

j . However, since V = Vj⊕V ⊥
j = Vj⊕

V ′
j we must have dim(W ) = dim(V ′

j ). Consequently,
V ⊥
j = W = V ′

j . In particular, for i �= j, Vi ⊂ V ′
j , that is,

Vi ⊥ Vj . Now let Bi be an orthonormal basis for Vi, 1 ≤
i ≤ s and set B = B1� . . . �Bs. Then B is an orthonormal
basis for V and MT (B,B) is diagonal. It follows from
Theorem (6.3) that T is normal.

3.
(
4 −i

i 4

)tr

=

(
4 i

−i 4

)tr

=

(
4 −i

i 4

)
. Thus, T ∗ =

T.

With respect to the orthonormal basis (

(
1√
2
i√
2

)
,

(
1√
2

−i√
2

)
)

the matrix of T is
(
5 0

0 3

)
.

4. ( 1√
3



1

1

1


 , 1√

2




1

−1

0


 , 1√

6




1

1

−2


).

5. Assume that b = c. Then




1

1

−2


 is an eigenvector with

eigenvalue b = c. Then with respect to the orthonormal

basis ( 1√
3



1

1

1


 , 1√

2




1

−1

0


 , 1√

6




1

1

−2


) the matrix of

T is diagonal with diagonal entries a, b, b so that by the
spectral theorem T is self-adjoint.

Conversely, assume that T is self-adjoint. Since

1

1

1


 and




1

−1

0


 are eigenvectors it must be the

case that Span(



1

1

1


 ,




1

−1

0


)⊥ = Span(




1

1

−2


) is

T−invariant, equivalently,




1

1

−2


 is an eigenvector, say

with eigenvalue d. However,




1

1

−2


 =




1

−1

0


 +

2




0

1

−1


 . Applying T we have

T (




1

1

−2


) = T (




1

−1

0


+2




0

1

−1


) = T (




1

−1

0


)+T (




0

1

−1


)

d




1

1

−2


 = b




1

−1

0


+ c




0

1

−1




d(




1

−1

0


+




0

1

−1


) = b




1

−1

0


+ c




0

1

−1




d




1

−1

0


+ d




0

1

−1


 = b




1

−1

0


+ c




0

1

−1



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(d− b)




1

−1

0


+ (d− c)




0

1

−1


 =



0

0

0




Since (




1

−1

0


 ,




0

1

−1


) is linearly independent, b = c =

d.

6. Assume T is self-adjoint. Since

(




1

1

1

1


 ,




1

1

−1

−1


 ,




1

−1

1

−1


) are eigenvectors it follows

that Span(




1

1

1

1


 ,




1

1

−1

−1


 ,




1

−1

1

−1


)⊥ = Span(




1

−1

−1

1


)

is T−invariant, equivalently,




1

−1

−1

1


 is an eigenvector

for T.

Conversely, assume




1

−1

−1

1


 is an eigenvector of T. by

normalizing (dividing each vector by 2) we obtain an or-
thonormal basis of eigenvectors. We need to know that
the corresponding eigenvalues are all real. If they are not
all distinct then since three are distinct and real the fourth
must be real. Therefore we may assume the eigenvalues
are all distinct. Then the minimum polynomial of T has
degree four and the eigenvalues are the roots of this poly-
nomial. Since T is a real operator the minimum polyno-
mial is a real polynomial. If it had a complex root then it
would have to have a second. However, since three of the
roots are real it must then be the case that the fourth root
is real.

7. It T is self-adjoint we have seen that the eigenvalues
are all real. Assume that T is normal and all its eigen-

values are real. Let B be an orthonormal basis such that
MT (B,B) is diagonal. Then MT (B,B) is a real diago-
nal matrix. In particular, MT∗(B,B) = MT (B,B)

tr
=

MT (B,B) from which it follows that T ∗ = T.

8. Let α1, . . . , αs be the distinct eigenvalue of S and
β1, . . . , βt the distinct eigenvalues of T. Set Vi = {v ∈
V |S(v) = αiv}. Then V = V1⊕· · ·⊕Vs. Claim each Vi

is T−invariant: let v ∈ Vi. Then S(T (v)) = (ST )(v) =

(TS)(v) = T (S(v)) = T (αiv) = αiT (v).

Now set Wj = {u ∈ V |T (u) = βju} so that V =

W1 ⊕ · · · ⊕ Wt. Now each Wj is S−invariant. Since Vi

is T−invariant it follows that Vi = Vi1 ⊕ · · · ⊕ Vit where
Vij = Vi ∩ Wj . Note that if either i �= i′ or j �= j′

then Vij ⊥ Vi′j′ . Thus, V is the orthogonal direct sum of
Vij , 1 ≤ i ≤ s, 1 ≤ j ≤ t. Let Bij be an orthonormal ba-
sis of Vij . Order the collection of bases Bij lexicograph-
ically. Then 
i,jBij is an orthonormal basis of V. Thus,
there exists an orthonormal basis of eigenvectors for each
of S and T.

9. If T is invertible there is nothing to prove so as-
sume that Ker(T ) �= {0}. Let α1 = 0, α2, . . . , αs

be the distinct eigenvalues of T. Set Vi = {v ∈
V |T (v) = αiv}. Since T is normal it is diagonalizable
and V = V1 ⊕ · · · ⊕ Vt. Let i > 1 and v ∈ Vi. Then
T k(v) = αk

i v �= 0 and therefore v ∈ Range(T k).

Thus, Range(T k) = V2 ⊕ · · · ⊕Vt. Since Range(T k) =

Range(T ), rank(T k) = rank(T ). Then by the rank-
nullity theorem nullity(T k) = nullity(T ). However,
Ker(T ) ⊂ Ker(T k) and therefore we have equality:
Ker(T ) = Ker(T k).

10. If T is completely reducible on a complex space then
there exists a basis B = (v1, . . . ,vn) of eigenvectors. De-
fine 〈

∑
i=1 aivi,

∑n
j=1 bivi〉 =

∑n
i=1 aibi. With respect

to this inner product B is an orthonormal basis. By the
Spectral theorem T is normal.

11. Let BU be an orthonormal basis of U consisting of
eigenvectors of T|U and BU⊥ be an orthonormal basis of
U⊥ consisting of eigenvectors of T|

U⊥ . Since T|U is self-
adjoint, for each vector u ∈ BU , T (u) = αu for some
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6.3. Normal Operators on Real Inner Product Spaces 63

real number α. Since T|
U⊥ is self-adjoint, for each vector

v ∈ BU⊥ , T (v) = βv for some real number v.

Now B = BU �BU⊥ is an orthonormal basis of V consist-
ing of eigenvectors of T. Thus T is normal. Since all the
eigenvalues are real it follows that T is self-adjoint.

12. This is false. Consider the operator which satisfies
T (e1) = e1, T (e2) = e2, T (e3) = 2e3, T (e4) = 2e4
where ei is the ith standard basis vector of R4 equipped
with the dot product. T is self-adjoint. Now let U =

Span(e1, e3) and W = Span(e1 + e2, e3 + e4). Then
W is T−invariant (the vectors e1+e2, e3+e4 are eigen-
vectors). Moreover, R4 = U ⊕ W. However, U⊥ =

Span(e2, e4).

13. If T is self-adjoint then U = Range(T ) =

Ker(T )⊥ = W⊥, whence W = U⊥. Conversely, as-
sume that W = Ker(T )⊥. Choose an orthonormal ba-
sis BU of U and an orthonormal basis BW of W . Since
U ⊥ W it follows that B = BU �BW is an orthonor-
mal basis of V . Now MT (B,B) is diagonal with di-
agonal entries 0 and 1 from which we conclude that T
is self-adjoint. Alternatively, the operator T is equal to
Proj(U,W ). By Exercise 14 of Section (6.1), T is self-
adjoint if and only if W = U⊥.

14. Since T is skew-Hermitian, T ∗ = −T. Assume v is
an eigenvector with eigenvalue α ∈ C \R. Let v be a unit
vector with eigenvalue α �= 0. Then

α = α〈v,v〉 = 〈αv,v〉 = 〈T (v),v〉

= 〈v, T ∗(v)〉 = 〈v,−T (v)〉 = 〈v,−αv〉

= −α〈v,v〉 = −α.

Thus, α + α = 0 which implies that the real part of α is
zero and α a pure imaginary number.

15. Let B = (v1, . . . ,vn) be a orthonormal basis
of V such that MT (B,B) is diag{α1, . . . , αn}. As-

sume [u]B =



c1
...
cn


. Then [T (u)]B =



α1c1

...
αncn


 and

〈T (u),u〉 = α1|c1|2 + . . . αn|cn|2 ∈ R.

6.3. Normal Operators on Real
Inner Product Spaces

In all the following Sn is the standard orthonormal basis
of Rn.

1. Let T be the operator on R4 such that MT (S4,S4) =


0 1 0 0

−1 0 0 0

0 0 0 2

0 0 −2 0


.

2. Let T be the operator on R4 such that MT (S4,S4) =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


.

3. By Lemma (6.5) there is an orthonormal basis S =

(v1,v2) and real numbers α, β with β �= 0 such that the

matrix of T with respect to S is A =

(
α −β

β α

)
.

Let A′ =

(
α β

−β α

)
. Then A′ is the matrix of T ∗ with

respect to S. It therefore suffices to prove that there is a
linear polynomial f(x) such that A′ = f(A). Set f(x) =
−x+ 2α.

4. Since T is normal it is completely reducible. Since
the minimum polynomial is a real irreducible quadratic
the minimal T−invariant subspaces have dimension 2. It
follows that there are T−invariant subspaces U1, . . . , Us

each of dimension 2 such that V = U1 ⊥ · · · ⊥ Us.

Assume that the roots of µT (x) are α ± iβ with β �= 0.
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Set A =

(
α −β

β α

)
. There are then orthonormal bases

Bj of Uj such that MT |Uj
(Bj ,Bj) = A. If we set

B = B1� . . . �Bs then B is an orthonormal basis of V

and MT (B,B) is the block diagonal matrix with s blocks
equal to A.

Now set A′ =

(
α β

−β α

)
. Then the matrix of T ∗ with

respect to B is the block diagonal matrix with s blocks
equal to A′. As we saw in Exercise 3, there is a real linear
polynomial f(x) such that A′ = f(A). It then follows that
MT∗(B,B) = f(MT (B,B)) from which we conclude
that T ∗ = f(T ).

5. Since T is completely reducible there are distinct real
numbers α1, . . . , αs and distinct real irreducible quadrat-
ics p1(x), . . . , pt(x) such that µT (x) = (x−α1) . . . (x−
αs)p1(x) . . . pt(x). Let the roots of pj(x) be aj ± ibj
where aj , bj ∈ R. Also, for 1 ≤ j ≤ s set gj(x) =
µT (x)
(x−αj)

and for 1 ≤ k ≤ t set hk = µT (x)
pk(x)

. Further, for
1 ≤ j ≤ s set Uj = {v ∈ V |T (v) = αjv} and for
1 ≤ k ≤ t set Wk = {v ∈ V |pk(T )(v) = 0}. Then

V = U1 ⊥ · · · ⊥ Us ⊥ W1 ⊥ · · · ⊥ Wt.

Let Sj be an orthonormal basis of Uj , 1 ≤ j ≤ s and
Sk an orthonormal basis of Wk such that the matrix of T
restricted to Wk with respect to Sk is block diagonal with

blocks equal to Ak =

(
ak −bk
bk ak

)
.

Set A′
k =

(
ak bk
−bk ak

)
. As we have seen in Exercise

3 there is a linear polynomial fk(x) such that A′
k =

fk(Ak).

Now, for each j, (x − αj) and gj(x) are relatively prime
and consequently there are polynomials cj(x), dj(x) such
that cj(x)(x − αj) + dj(x)gj(x) = 1. Set Fj(x) =

dj(x)gj(x).

Also, for each k, pk(x) and hk(x) are relatively prime
and so there are polynomials Ck(x) and Dk(x) such

that Ck(x)pk(x) + Dk(x)hk(x) = 1. Set Gk(x) =

fk(x)Dk(x)hk(x).

Now set f(x) = F1(x) + · · · + Fs(x) + G1(x) + · · · +
Gt(x). Then f(T ) = T ∗.

6. By Exercise 5 there exists a polynomial f(x) such that
T ∗ = f(T ). Since (T ∗)∗ = T there is also a polynomial
g(x) such that T = g(T ∗). Now assume that ST = TS.

Then S commutes with f(T ) = T ∗. Likewise, if S com-
mutes with T ∗ then S commutes with g(T ∗) = T.

7. The hypothesis implies that T is cyclic. Since TS =

ST it follows that there is a polynomial f(x) such that
S = f(T ). Since µT (x) is quadratic, f(x) is linear which
implies that S ∈ Span(T, IV ).

8. Under the given hypothesis, there are real distinct
irreducible quadratic polynomials p1(x), . . . , ps(x) such
that µT (x) = p1(x) . . . ps(x) and if Uj = {v ∈
V |pj(T )(v) = 0} then dim(Uj) = 2. Moreover, V =

U1 ⊥ · · · ⊥ Us. If U is a T−invariant subspace then
U = (U∩U1)⊕· · ·⊕(U∩Us). It therefore suffices to show
that each Uj is S−invariant. Since ST = TS it follows
that S commutes with pj(T ). Assume now that v ∈ Uj .

Then pj(T )(S(v)) = (pj(T )S)(v) = (Spj(T ))(v) =

S(pj(T )(v)) = S(0) = 0. Thus, S(v) ∈ Uj .

9. Continue with the notation of Exercise 8. It suffices
to prove that S restricted to each Uj is normal. However,
this follows from Exercise 7.

10. Under the given hypotheses, T is a cyclic operator.
Therefore dim(C(T )) = dim(V ) = deg(µT (x)) which
is even.

11. We claim that dim(C(T )) = 8. Let S =

(v1,v2,v3,v4) be an orthonormal basis such that

MT (S,S) =




1 −1 0 0

1 1 0 0

0 0 1 −1

0 0 1 1


 . The vector S(v1)

can be chosen arbitrarily. Then S(v2) = T (S(v1)) −
S(v1). Likewise, S(v3) can be chosen arbitrarily and
S(v4) = T (S(v3))− S(v3).
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12. Since T is skew-symmetric it is normal since T

commutes with −T. Note that for any vector v we have
〈T (v),v〉 = 〈v, T ∗(v)〉 = 〈v,−T (v)〉 which implies
that 2〈T (v),v〉 = 0. Thus, v ⊥ T (v). This implies that
if v is an eigenvector then T (v) = 0. Since T is invertible
there are no eigenvectors. Thus, a minimal T−invariant
subspace has dimension 2. Let p(x) be a real irreducible
quadratic polynomial dividing µT (x) with roots α ± iβ

with α, β ∈ R, β �= 0.

Let U be a 2-dimensional T−invariant subspace of V

such that p(T ) restricted to U is the zero operator. Let
S = (u1,u2) be an orthonormal basis of U such that the

matrix of T with respect to S is A =

(
α −β

β α

)
. Since

T is a skew-symmertic operator the matrix A is skew-
symmetric. But this implies that α = 0 and the roots
of p(x) are purely imaginary.

6.4. Unitary and Orthogonal
Operators

1. Suppose T (v) = 0. Then 0 =‖ T (v) ‖=‖ v ‖ .

By positive definiteness we conclude that v = 0 and so
Ker(T ) = {0} and T is injective. Since V is finite di-
mensional from the half is good enough theorem T is bi-
jective. Let v ∈ V and set u = T−1(v). Then v = T (u).

Therefore, ‖ T−1(v) ‖=‖ u ‖=‖ T (u) ‖ since T is an
isometry. However, T (u) = v so we have shown that
‖ T−1(v) ‖=‖ v ‖ and T−1 is an isometry.

2. Let S, T be isometries of V and let v be an arbitrary
vector in V. Since S is an isometry, ‖ S(T (v)) ‖=‖
T (v) ‖ . Since T is an isometry, ‖ T (v) ‖=‖ v ‖ .

Thus, ‖ (ST )(v) ‖=‖ S(T (v)) ‖=‖ v ‖ and ST is an
isometry.

3. Let u be an arbitrary vector and assume [u]S =



c1
...
cn




so that u = c1v1 + · · ·+ cnvn. Then

‖ u ‖2=
n∑

j=1

‖ cj ‖2 .

By the definition of T, T (u) =
∑n

j=1 λjcjvj . Then

‖ T (u) ‖2=
n∑

j=1

‖ λjcj ‖2=

n∑
j=1

|λj |2 ‖ cj ‖2=
n∑

j=1

‖ cj ‖2=‖ u ‖2 .

4. We recall that for a real finite dimensional vector space
and S an orthonormal basis, MT∗(S,S) = MT (S,S)tr.
So, assume T is an isometry. Then T ∗ = T−1 whence
A−1 = MT−1(S,S) = MT∗(S,S) = Atr.

Conversely, assume A−1 = Atr. Since A−1 =

MT−1(S,S) and Atr = MT∗(S,S) we can conclude
that T−1 = T ∗ and therefore T is an isometry.

5. Let S be the operator such that S(uj) = vj . Then S

is a unitary operator and, consequently, MS(S1,S1) is a
unitary matrix. However, MIV (S2,S1) = MS(S1,S1)

and so the change of basis matrix, MIV (S2,S1), is a uni-
tary matrix.

6. Let S be the operator such that S(uj) = vj . Then S

is an orthogonal operator and MS(S1,S1) is an orthogo-
nal matrix. However, MIV (S2,S1) = MS(S1,S1) and
consequently, MIV (S2,S1) is an orthogonal matrix.

7. Let V = Cn equipped with the usual inner product,
S be the operator on V given by multiplication by A and
let S = (e1, . . . , en) be the standard (orthonormal ba-
sis). Assume AA

tr
= A

tr
A. Since MS∗(S,S) = A

tr

it follows that S is normal. By the complex spectral the-
orem there exists an orthonormal basis S ′ consisting of
eigenvectors for S, equivalently, so that MS(S ′,S ′) is a
diagonal matrix. Set Q = MIV (S ′,S). By Exercise 5,
Q is a unitary matrix. Then Q−1AQ = MS(S ′,S ′) is a
diagonal matrix.

Conversely, assume there is a unitary matrix Q such
that Q−1AQ is diagonal. Let T be the operator such
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MT (S,S) = Q. T is a unitary operator and therefore
if T (ej) = uj ,S ′ = (u1, . . . ,un) is an orthonormal ba-
sis. Moreover, the vectors uj are eigenvectors for S and,
consequently, by the complex spectral theorem S is nor-
mal, that is, SS∗ = S∗S. Since A = MS(S,S) and
A

tr
= MS∗(S,S) it follows that AA

tr
= A

tr
A.

8. Let V = Rn equipped with the dot product, let S be
the operator on V giben by multiplication by A and let
S = (e1, . . . , en) be the standard (orthonormal basis).
Assume A = Atr. Since MS∗(S,S) = Atr it follows
that S is self-adjoint. By the real spectral theorem there
exists an orthonormal basis S ′ consisting of eigenvectors
for S, equivalently, so that MS(S ′,S ′) is a diagonal ma-
trix. Set Q = MIV (S ′,S). By Exercise 6, Q is an orthog-
onal matrix. Then QtrAQ = Q−1AQ = MS(S ′,S ′) is
a diagonal matrix.

Conversely, assume there is an orthogonal matrix Q such
that QtrAQ = Q−1AQ is diagonal. Let T be the oper-
ator such MT (S,S) = Q. T is an orthogonal operator
and therefore if T (ej) = uj ,S ′ = (u1, . . . ,un) is an or-
thonormal basis. Moreover, the vectors uj are eigenvec-
tors for S and, consequently, by the real spectral theorem,
S is self-adjoint, that is, S∗ = S Since A = MS(S,S)
and Atr = MS∗(S,S) it follows that Atr = A.

9. Assume T is a real isometry. Since TT ∗ = T ∗T =

IV it follows that T is a normal operator. Conse-
quently, T is completely reducible and we can express
V as an orthogonal sum U1 ⊥ · · · ⊥ Us ⊥ W1 ⊥
· · · ⊥ Wt of T−invariant subspspaces where dim(Uj) =

1, dim(Wk) = 2 and T restricted to Wk does not contain
an eigenvector. Moreover, there is an orthonormal basis of
Sk of Wk such that the matrix of T restricted to Wk with

respect to Sk has the form
(
αk −βk

βk αk

)
with βk > 0.

Let uj ∈ Uj be a vector of norm 1. Since Uj is
T−invariant, in particular, uj is an eigenvector of T. Sup-
pose T (uj) = ajuj . Then 1 =‖ uj ‖=‖ T (uj) ‖=‖
ajuj ‖= |aj | ‖ uj ‖= |aj |. Thus, aj = ±1.

Finally, assume that Sk = (v1k,v2k). Then T (v1k) =

αkv1k + βkv2k. Since T is an isometry

1 =‖ v1k ‖2=‖ T (v1k ‖2=

‖ αkv1k + βkv2k ‖2= α2
k + β2

k.

Since βk > 0 there exists a unique θk, 0 < θk < π

such that αk = cos θk, βk = sin θk. Now by setting
S = (u1, . . . ,us)�S1� . . . �St we obtain an orthonor-
mal basis of V and the matrix of T is block diagonal
with entries aj , 1 ≤ j ≤ s and 2 × 2 blocks Ak =(
cos θk −sin θk
sin θk cos θk

)
for 1 ≤ k ≤ t.

Conversely, assume that there exists an orthonormal ba-
sis S such that MT (S,S) is block diagonal and each
block is either 1 × 1 with entry ±1 or 2 × 2 of the form(
cos θ −sin θ

sin θ cos θ

)
for some θ, 0 ≤ θ < π.

Assume the basis has been ordered so that the first s

blocks are 1×1 and the remaining blocks, A1, . . . , At are

2 × 2 and suppose Ak =

(
cos θk −sin θk
sin θk cos θk

)
. Suppose

S = (u1, . . . ,us)�S1� . . . �St where Sk = (v1k,v2k)

consists of two orthogonal unit vectors. By our
assumption on the MT (S,S) T (uj) = ajuj

where a ∈ {−1, 1}. Also, T (v1k) = cos θkv1k +

sin θkv2k, T (v2k) = −sin θkv1k + cos θkv2k.

Then T (Sk) = (T (v1k), T (v2k)) is an or-
thonormal basis for Span(v1k,v2k). Thus,
(T (u1), . . . , T (us))�T (S1)� . . . �T (St) is an orthonor-
mal basis of V and T is an isometry.

10. If T is an isometry then T ∗T = TT ∗ = IV . If T
is self-adjoint then T ∗ = T and therefore T 2 = IV .

It follows that the minimum polynomial of T divides
x2 − 1 = (x − 1)(x + 1). Consequently, the eigenval-
ues of T are all ±1. Since T is self-adjoint there exists
an orthonormal basis S such that MT (S,S) is diagonal.
Since the eigenvalues of T are all ±1 the diagonal entries
of MT (S,S) are all ±1.

11. Assume that T is a self-adjoint operator. Then there
exists an orthonormal basis S = (v1, . . . ,vn) consisting

K23692_SM_Cover.indd   74 02/06/15   3:11 pm
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of eigenvectors of T. Moreover, if T (vj) = ajvj then
aj ∈ R. Suppose now that T 2 = IV . Then the minimum
polynomial of T divides x2 − 1 and all the aj ∈ {1,−1}.
Then (T (v1), . . . , T (vn)) is an orthonormal basis and T

is an isometry.

Conversely, assume that T is an isometry. It follows from
Exercise 10 that T 2 = IV .

12. Let T be the operator on C2 which has matrix(
i 0

0 1

)
with respect to the standard basiis.

13. Assume U is T−invariant. Since T is an isometry, by
Exercise 1, T is bijective. In particular, T restricted to U

is injective and since U is T−invariant, T restricted to U

is bijective. Assume w ∈ U⊥ and u ∈ U is arbitrary. We
need to prove that T (w) ⊥ u. Since T restricted to U is
bijective there exists v ∈ U such that T (v) = u. Now

〈T (w),u〉 = 〈T (w), T (v)〉 = 〈T ∗T (w),u〉.

Since T is an isometry, T ∗T = IV and therefore

〈T ∗T (w),u〉 = 〈w,u〉 = 0.

14. Assume A is upper triangular and a unitary matrix.
Then the diagonal entries of A are non-zero since A is
invertible. The inverse of an upper triangular matrix is
upper triangular. On the other hand, since A is unitary,
A−1 = A

tr
is lower triangular. So A−1 is both upper

and lower triangular and hence diagonal and therefore A

is diagonal.

15. Let (u1, . . . ,uk) be an orthonormal basis of U1 and
set u′

j = R(uj). Then (u′
1, . . . ,u

′
k) is an orthonormal

basis of U2. Extend (u1, . . . ,uk) to an orthonormal ba-
sis (u1, . . . ,un) of V and extend (u′

1, . . . ,u
′
k) to an or-

thonormal basis (u′
1, . . . ,u

′
n) of V. Let S be the operator

on V such that S(uj) = u′
j for 1 ≤ j ≤ n. Then S

restricted to U1 is equal to R and since S takes an or-
thonormal basis of V to an orthonormal basis of V , S is
an isometry.

16. Since the dimension of V is odd, S must have an
eigenvector v. Since ‖ v ‖=‖ S(v) ‖ the eigenvalue of v
is ±1. Then S2(v) = v.

17. Let SU be an orthonormal basis of U and SU⊥ be
an orthonormal basis of U⊥. Then S = SU ∪ SU⊥ is an
orthonormal basis of V. MT (S,S) is a diagonal matrix
with ±1 on the diagonal and therefore T is a isometry
and self-adjoint.

18. Set S = (u1,u2,u3,u4) =

(




1

1

1

1


 ,




1

1

−1

−1


 ,




1

−1

1

−1


 ,




1

−1

−1

1


) and S ′ =

(v1,v2,v3,v4) = (




1

1

1

1


 ,




1

1

−1

−1


 ,




1

−1

1

−1


 ,




1

0

0

0


).

A necessary and sufficient condition for an operator Q

to satisfy Q−1SQ = T is that Qi(vj) = ajuj with
aj �= 0. If Q is an isometry then we must have Q(vj) =

±uj for j = 1, 2, 3 it order to preserve norms and
Q(v4) = ± 1

2u4. However, since 〈v3,v4〉 = 1 we must
have 〈Q(v3), Q(v4)〉 = 1 whereas Q(v3), Q(v4) are or-
thogonal.

6.5. Positive Operators, Polar
Decomposition and Singular

Value Decomposition

1. Assume S is a positive operator and S2 = T.

Then ST = TS. Since both are self-adjoint there ex-
ists an orthonormal basis S = (v1, . . . ,vn) consisting
of eigenvectors for both S and T. Let S(vj) = ajvj and
T (vj) = bjvj and assume the notation has been chosen
so that bj �= 0 for j ≤ k, bj = 0 for j > k so that
Ker(T ) = Span(vk+1, . . . ,vn). Now bjvj = T (vj) =

S2(vj) = a2jvj . If follows that if j > k then aj = 0. If
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68 Chapter 6. Linear Operators on Inner Product Spaces

j ≤ k then aj , bj > 0 and a2j = bj so that aj is uniquely
determined. Thus, S is unique.

2. Since T is normal there exists an orthonormal basis
S = (v1, . . . ,vn) consisting of eigenvectors of T. As-
sume T (vj) = ajvj . Let bj ∈ C such that b2j = aj and let
S be the operator such that S(vj) = bjvj . Then S2 = T.

3. Under the hypothesis there is an orthonormal basis S =

(v1,v2) such that MT (S,S) =

(
a −b

b a

)
with b > 0.

Set r =
√
a2 + b2, A = a

r , B = b
R . Then A2 + B2 = 1

and B > 0 so that there exists a unique θ, 0 < θ < π such
that A = cos θ,B = sin θ. Let S be the operator such

that MS(S,S) =
(
rcos θ

2 −rsin θ
2

rsin θ
2 rcos θ

2

)
. Then S2 = T.

4. Under the hypothesis there are T−invariant sub-
spaces U1, . . . , Un each of dimension two such that for
j �= k, Uj ⊥ Uk and V = U1 ⊕ · · · ⊕ Un. By Exer-
cise 3, there exists an operator Sj such that Ker(Sj) =

U1 ⊕ · · · ⊕ Uj−1 ⊕ Uj+1 ⊕ · · · ⊕ Un and such that S2
j is

the restriction of T to Uj . Set S = S1 + · · · + Sn. Then
S2 = T.

5. Let S, T be positive operators. Then (S + T )∗ = S∗ +

T ∗ = S+T and so S+T is self-adjoint. Now let v ∈ V.

Then 〈S(v),v〉 ≥ 0 and 〈T (v),v〉. It now follows that

〈(S + T )(v),v〉 = 〈S(v) + T (v),v〉 =

〈S(v),v〉+ 〈T (v),v〉 ≥ 0 + 0 = 0.

6. Since T is a positive operator it is self-adjoint. Since
c is a real number cT is self-adjoint. Now let v ∈ V. We
then have

〈(cT )(v),v〉 = 〈cT (v),v〉 = c〈T (v),v〉 ≥ 0

the latter inequality since 〈T (v),v〉 ≥ 0 and c > 0.

7. Since T is a positive operator there exists an orthonor-
mal basis S = (v1, . . . ,vn) of eigenvectors such that if

T (vj) = ajvj then aj ≥ 0. Assume that T is invertible.
Then all aj > 0. Let v = c1v1 + · · ·+ cnvn �= 0. Then

〈T (v),v〉 = 〈
n∑

j=1

ajcjvj ,

n∑
j=1

cjvj〉 =

n∑
j=1

ajc
2
j .

Since aj > 0 and cj ∈ R, ajc2j ≥ 0. On the other hand,
some cj > 0 and therefore

∑n
j=1 ajc

2
j > 0.

On the other hand, suppose T is not invertible and v ∈
Ker(T ). Then 〈T (v),v〉 = 0.

8. Since T is an invertible positive operator there ex-
ists an orthonormal basis S = (v1, . . . ,vn) such that
T (vj) = ajvj with aj ∈ R+. Let S be the operator such
that S(vj) = 1

aj
vj . Then S = T−1 since ST (vj) = vj

for all j. Since 1
aj

> 0 it follows that T−1 = S is a posi-
tive operator.

9. 1) [ , ] is positive definite: Assume v �= 0. Then
[v,v] = 〈T (v),v〉 > 0 by Exercise 7.

2) [ , ] is additive in the first argument: [v1 + v2,w] =

〈T (v1+v2),w〉 = 〈T (v1)+T (v2),w〉 = 〈T (v1),w〉+
〈T (v2),w〉 = [v1,w] + [v2,w].

3) [ , ] is homogeneous in the first argument: [cv,w] =

〈T (cv),w〉 = 〈cT (v),w〉 = c〈T (v),w〉 = c[v,w].

4) [ . ] satisfies conjugate symmetry: [w,v] =

〈T (w),v〉 = 〈w, T ∗(v)〉. However, since T is a positive
operator it is self-adjoint and T ∗ = T. Thus

〈w, T ∗(v)〉 = 〈w, T (v)〉 =

〈T (v),w〉 = [v,w].

10. [S(v),w] = 〈T (S(v)),w〉 = 〈S(v), T (w)〉
since T is self-adjoint. We therefore need to show that
[v, (T−1S∗T )(w)] = 〈S(v), T (w)〉. By the definition of
[ , ] we have
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6.5. Positive Operators, Polar Decomposition and Singular Value Decomposition 69

[v, (T−1S∗T )(w)] = 〈T (v), (T−1S∗T )(w)〉 =

〈v, T (T−1S∗T )(w)〉 =

〈v, (TT−1)(S∗T )(v)〉 =

〈v, S∗(T (w)〉 =

〈S(v), T (w)〉

as was required.

11. Define [ , ] by [v,w] = 〈T (v),w〉. By Exercise 9 this
is an inner product on V. Set S = RT. By Exercise 10 the
adjoint, S�, of S with respect to [ , ] is S� = T−1S∗T.

Now S∗ = (RT )∗ = T ∗R∗ = TR since both R and T

are self-adjoint. Thus, S� = (RT )� = T−1(TR)T =

RT . Consequently, RT is self-adjoint with respect to [ , ]

and therefore is diagonalizable with real eigenvalues. The
operator TR is similar to RT since TR = T (RT )T−1

and since RT is diagonalizable with real eigenvalues so
is TR.

12. Assume T is a positive operator and let S =

(v1, . . . ,vn) be an orthonormal basis for V such that
T (vj) = ajvj where aj ∈ R+ ∪ {0}. Now assume that
T is an isometry. Then we must have |aj | = 1 for all j,
whence, aj = 1 for all j and T = IV .

13. Since S, T are self-adjoint and ST = TS it follows
that ST is self-adjoint. Then there exists an orthonormal
basis S = (v1, . . . ,vn) consisting of eigenvectors for S
and for T. Set S(vj) = ajvj , T (vj) = bjvj . Since S, T

are positive, aj , bj ≥ 0. Then ajbj ≥ 0. Now S is an
orthonormal basis for V consisting of eigenvectors for ST
and ST (vj) = ajbj ≥ 0. It follows that ST is a positive
operator.

14. Let the operators S and T on R2 be defined as multi-
plication by the following matrices, respectively:

(
2 0

0 3

)
,

(
3 −1

−1 3

)
.

15. Assume T is invertible. Then T ∗T is invertible and
hence so is

√
T ∗T . Then S = T

√
T ∗T

−1
is unique.

On the other hand if T is not invertible then T ∗T is not
invertible and neither is

√
T ∗T . In this case there are in-

finitely many isometries S which extend R and so S is not
unique.

16. Since T is not invertible, S is not unique. One solution
is




1
3

−
√
3−1
3

−
√
3+1
3√

3−1
3

1
3

−
√
3−1
3√

3+1
3

√
3+1
3

1
3




17. Let V = Cn,W = Cm and T : V → W be the op-
erator such that T (v) = Av. Let SV denote the standard
basis of V and SW the standard basis of W.

By Theorem (6.12) there are orthonormal bases BV =

(v1, . . . ,vn) and BW = (u1, . . . ,um) such that T (vj) =

sjwj for 1 ≤ j ≤ r and T (vj) = 0W if j > r. Let
P = MIV (BV ,SV ) and Q = MIW (SW ,BW ). Assume
1 ≤ j ≤ r. Then

QAPeVj = QAvj = Q(T (vj)) = Q(sjwj) =

sjQwj = sje
W
j .

If j > r then

QAPeVj = QAvj = Q(T (vj)) = Q0W = 0W .

Thus, QAP has the required form.

18. We have shown that Ker(T ) = Ker(T ∗T )

and similarly, Ker(T ∗) = Ker(TT ∗). Since T ∗T is
a self-adjoint operator it is diagonalizable and V =

Ker(T ∗T )⊕Range(T ∗T ) = Ker(T )⊕Range(T ∗T ).

Similarly, V = Ker(T ∗) ⊕ Range(TT ∗). Note
that since nullity(T ) = nullity(T ∗) it follows that
dim(Range(T ∗T )) = dim(Range(TT ∗)). Let S de-
note the restriction of the operator T to Range(T ∗T ).

Suppose v ∈ Range(T ∗T ). Then there is a vector
u ∈ V such that v = (T ∗T )(u). Then S(v) =
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70 Chapter 6. Linear Operators on Inner Product Spaces

T (v) = T ([T ∗T ])(u) = (TT ∗)(T (u)) ∈ Range(TT ∗).

Thus, Range(S) ⊂ Range(TT ∗). However, S is in-
jective since Ker(T ) ∩ Range(T ∗T ) = {0}. Since
dim(Range(T ∗T )) = dim(Range(TT ∗)), in fact, S is
an isomorphism.

Now assume that v ∈ Range(T ∗T ) is an eigenvector
with eigenvalue a. We claim that S(v) is an eigenvector
of TT ∗ with eigenvalue a. Thus, we must apply TT ∗ to
S(v) and obtain aS(v).

(TT ∗)(S(v) = (TT ∗)(T (v)) = [T (T ∗T )](v) =

T [(T ∗T )(v)] = T (av) = aT (v) = aS(v)

as required.

19. Assume rank(T ) = k. Since T is semi-positive
there exists an orthonormal basis B = (v1, . . . ,vn) of
eigenvectors for T with T (vj) = ajvj with aj > 0

for 1 ≤ j ≤ k and T (vj) = 0 for j > k. Now
T ∗T = T 2 since T is self-adjoint. Now T 2(vj) = a2jvj

for 1 ≤ j ≤ k and T 2(vj) = 0 for j > k. Then the

singular values of T are
√
a2j , 1 ≤ j ≤ k. However, since

aj > 0,
√
a2j = aj .

20. Assume SP = PS. Multiplying on the left and on the
right by S−1 we get PS−1 = S−1P.

Now, (SP )∗ = P ∗S∗ = PS−1 = S−1P. Then
(SP )∗(SP ) = (PS−1)(SP ) = P 2. On the other hand,
(SP )(SP )∗ = (SP )(PS−1) = (PS)(S−1P ) = P 2 and
SP is normal.

Conversely, assume SP is normal. Then P 2 =

(SP )∗(SP ) = (SP )(SP )∗ = SP 2S−1. Thus, S

commutes with P 2 and therefore leaves invariant each
eigenspace of P 2. However, since P is positive the
eigenspaces of P and the eigenspaces of P 2 are the
same. Therefore S leaves the eigenspaces of P invari-
ant. Let v be an eigenvector of P with eigenvalue a. Then
(SP )(v) = S(P (v)) = S(av) = aS(v). On the other

hand, (PS)(v) = P (S(v)) = aS(v) since S(v) is an
eigenvector with eigenvalue a.
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Chapter 7

Trace and Determinant of a Linear Operator

7.1. Trace of a Linear
Operator

1. Let A have entries aij , 1 ≤ i, j ≤ n and B have entries
bij , 1 ≤ i, j ≤ n. Then A + B has entries aij + bij , 1 ≤
i, j ≤ n. Then traces are given by

Trace(A) = a11 + · · ·+ ann

Trace(B) = b11 + · · ·+ bnn

Tr(A+B) = (a11 + b11) + · · ·+ (ann + bnn) =

[a11 + · · ·+ ann] + (b11 + · · ·+ bnn] =

Trace(A) + Trace(B).

2. Let A have entries aij , 1 ≤ i, j ≤ n. Then the entries
of cA are caij , 1 ≤ i, j ≤ n. The traces are given by

Trace(A) = a11 + · · ·+ ann

Trace(cA) = (ca11) + · · ·+ (cann) =

c[a11 + · · ·+ ann] = cTrace(A).

3. Assume P is an invertible n × n matrix and C is an
n×n matrix and set D = P−1CP. We need to show that
Trace(D) = Trace(C). Set A = CP and B = P−1. By
Theorem (7.1), Trace(AB) = Trace(BA). However,
AB = (CP )P−1 = C(PP−1) = CIn = C whereas
BA = P−1CP = D.

4. The matrices MT (B,B) and MT (B′,B′) are similar
so by Corollary (7.1) they have the same trace.

5. Let B be a basis for V. Then Tr(ST ) =

Trace(MST (B,B)). However, MST (B,B) =

MS(B,B)MT (B,B) so that

Tr(ST ) = Trace(MS(B,B)MT (B,B))

In exactly the same way

Tr(TS) = Trace(MT (B,B)MS(B,B))

By Theorem (7.1), Trace(MS(B,B)MT (B,B) =

Trace(MT (B,B)MS(B,B)).

6. Let B be a basis for V. Then Tr(cT ) =

Trace(McT (B,B)) = Trace(cMT (B,B)).
However, by Exercise 2, Trace(cMT (B,B)) =

cTrace(MT (B,B)) = cTr(T ).

7. Since (x1 + x2 + x3)
2 − (x2

1 + x2
2 + x2

3) = 2(x1x2 +

x1x3+x2x3) we conclude that x1x2+x1x3+x2x3 = 0.

Next note that

3x1x2x3 = (x1 + x2 + x3)(x1x2 + x1x3 + x2x3)−

(x1 + x2 + x3)(x
2
1 + x2

2 + x2
3) + (x3

1 + x3
2 + x3

3) = 0

We may therefore assume that at least one of x1, x2, x3 is
zero and by symmetry that x3 = 0. Since x1x2 + x1x2 +

x2x3 = 0 we further conclude that x1x2 = 0. But then
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72 Chapter 7. Trace and Determinant of a Linear Operator

(x1 ± x2)
2 = x2

1 + x2
2 ± 2x1x2 = 0

from which we have

x1 + x2 = x1 − x2 = 0

and x1 = x2 = 0.

8. Since A is similar to an upper triangular matrix we can
assume that A is upper triangular. Let α1, α2, α3 be the
diagonal entries of A. Then the diagonal entries of A2 are
α2
1, α

2
2, α

2
3 and the diagonal entries of A3 are α3

1, α
3
2, α

3
3.

It follows that

0 = Tr(A) = α1 + α2 + α3

0 = Tr(A2) = α2
1 + α2

2 + α2
3

0 = Tr(A3) = α3
1 + α3

2 + α3
3.

From Exercise 7, α1 = α2 = α3 = 0 and A is nilpotent.

9. This depends on proving the only solution in complex
numbers to the systems of equation

x1 + . . . + xn = 0

x2
1 + . . . + x2

n = 0
...

... . . .
...

...
...

xn
1 + . . . + xn

n = 0

is x1 = x2 = · · · = xn.

The crux is to show that x1x2 . . . xn = 0 from which it
follows that one of the variables is zero which, by sym-
metry can be taken to be xn and then apply induction.

For the former, consult an abstract algebra book in which
it is proven that the homogeneous polynomials x1+ · · ·+
xn, x

2
1 + · · ·+x2

n, . . . , x
n
1 + · · ·+xn

n generate the ring of
homogeneous polynomials in x1, x2, . . . , xn. In particu-
lar, x1x2 . . . xn.

10. Let B be a basis for V. Set A = MT (B,B).
We need to prove that A is the n × n zero matrix.

Now Trace(MS(B,B)A) = 0 for every operator S on
V. However, MS(B,B) ranges over all the matrices in
Mnn(F). Let Eij be the matrix which has one non-zero
entry, a one in the (i, j)−position. Let aij be the entry
of A in the (i, j)−position. If k �= i then the kth row
of EijA is zero, whereas the ith row consists of the jth

row of A. and therefore Trace(EijA) = aji. Thus, for
all i, j, aij = 0 and A is the zero matrix as required.

11. Since all the eigenvalues of A are real there
exists a non-singular matrix Q such that Q−1AQ is
upper triangular. Assume the diagonal entries of
Q−1AQ are a1, . . . , an. Then the diagonal entries
of (Q−1AQ)2 = Q−1A2Q are a21, . . . , a

2
n. Then

Trace(A2) = Trace(Q−1A2Q) = a21 + · · ·+ a2n ≥ 0.

12. Since T 2 = T the minimum polynomial of T divides
x2 − x and all the eigenvalues of A are 0 or 1. Let B be a
basis for V and set A = MT (B,B). There exists a non-
singular matrix Q such that Q−1AQ is upper triangular
with diagonal entries 0 or 1. Then Tr(T ) = Trace(A) =

Trace(Q−1AQ) is a sum of the diagonal entries, whence
a non-negative integer.

13. Let B be an orthonormal basis of V and
set A = MT (B,B). Then MT∗(B,B) = Atr.

Since A and Atr have the same diagonal entries,
Trace(A) = Trace(Atr). Thus, Tr(T ) = Trace(A) =

Trace(Atr) = Tr(T ∗).

14. Let B be an orthonormal basis of V and set A =

MT (B,B). Then MT∗(B,B) = A
tr
. It now follows that

Tr(T ∗) = Trace(A
tr
) = Trace(A) = Trace(A) =

Tr(T ).

15. Tr : L(V, V ) → F is a non-zero linear transformation
and consequently it is onto the one-dimensional space F.
sl(V ) = Ker(Tr) and so is a subspace and by the rank-
nullity theorem, dim(sl(V )) = dim(L(V, V )) − 1 =

n2 − 1.

16. If S = T ∗T then S is a semi-positive operator
which implies that it has real eigenvalues which are all
non-negative and, since it is self-adjoint, there is a or-
thonormal basis B such that MT (B,B) is diagonal. Let
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A = MT (B,B) = diag{a1, . . . , an}. Since aj are
eigenvalues all ai ≥ 0. Then Tr(T ) = Trace(A) =

a1 + · · ·+ an ≥ 0. On the other hand, the trace is zero if
and only if a1 = · · · = an = 0. However, this implies A
is the zero matrix, whence T is the zero operator.

17. We do a proof by induction on n = dim(V ). If
n = 1 there is nothing to do. So assume the result is true
for operators on spaces of dimension n − 1 and assume
dim(V ) = n. If T = 0V→V then any basis works so we
may assume T �= 0V→V . We first claim that there is a
vector v such that T (v) /∈ Span(v). Otherwise, for each
v there is λv ∈ F such that T (v) = λvv. We claim that
λv is independent of the vector v. Of course, if w = cv

then T (w) = cT (v) = cλvv = λv(cv) = λvw. Sup-
pose on the other hand that (v,w) is linearly independent.
Then λv+wv+λv+ww = λv+w(v+w) = T (v+w) =

T (v) + T (w) = λvv + λww. Then λv = λv+w = λw.
Thus, T = λIV for some λ ∈ F. Then Tr(T ) = nλ = 0.
Since the characteristic of F is zero, λ = 0, contrary to
our assumption that T �= 0V→V .

Now choose v such that T (v) /∈ Span(v) and set
v1 = v and v2 = T (v) and extend to a basis B1 =

(v1,v2, . . . ,vn). Let T (vj) =
∑n

i=1 aijvi and set aj =

[T (vj)]B. Note that a1 = e2 =




0

1

0
...
0




. Since Tr(T ) = 0

we must have
∑n

i=2 aii = 0. Now define an operator S
on V such that S(v1) = v1 and S(vj) =

∑n
i=2 aijvi.

Note that W = Span(v2, . . . ,vn) is S-invariant and that
Tr(S|W ) =

∑n
i=2 aii = 0. Set S′ = S|W . By the induc-

tive hypothesis, there is a basis BW = (w1, . . . ,wn−1)

for W such that the diagonal entries of MS′(BW ,BW )

are all zero. Set u1 = v1,uj = wj−1 for 2 ≤ j ≤ n and
B = (u1, . . . ,un). Since T (vj)−S(vj) ∈ Span(v1) for
2 ≤ j ≤ n it follows that T (uj) − S(uj) ∈ Span(v1)

for 2 ≤ i ≤ n. Consequently, for 2 ≤ j ≤ n, [T (uj)]B −

[S(uj)]B ∈ Span(e1) for 2 ≤ j ≤ n where e1 =




1

0
...
0


.

However, the (j, j)-entry of [S(uj)]B is zero, whence the
(j, j)-entry of [T (uj)]B is zero. Thus, all the diagonal
entries of MT (B,B) are zero as required.

18. Let Z be the set of n× n matrices all of whose diag-
onal entries are zero. Then Z is a subspace of Mnn(F) of
dimension n2 − n. For a matrix B define a map ad(B) :

Mnn(F) → Mnn(F) by ad(B)(C) = BC −CB. This is
a linear map and Ker(ad(B)) = C(B) the subalgebra of
Mnn(F) which commutes with B. Note that if the mini-
mum polynomial of B has degree n then dim(C(B)) = n

and Range(ad(B)) has dimension n2 − n.

Now let a1, . . . , an be distinct elements of F and let B
be the diagonal matrix with entries a1, . . . , an. Then the
minimum polynomial of B is (x − a1) . . . (x − an) has
degree n and therefore dim(Range(ad(B)) = n2 − n.

On the other hand, for any matrix C the diagonal entries
of BC − CB are all zero. Thus, Range(ad(B)) = Z.

Thus, for A ∈ Z then there is a matrix C such that A =

BC − CB.

19. By Exercise 17 there exists a basis B such that A =

MT (B,B) has diagonal entries all zero. By Exercise 18
there are matrices B,C such that A = BC − CB. Let
R,S ∈ L(V, V ) such that MR(B,B) = B,MS(B,B) =
S. Then T = RS − SR.

7.2. Determinants

1. Let B be the matrix obtained from A by exchanging
the first and ith rows. Let the entries of A be akl and the
entries of B be bkl. Let Akl be the matrix obtained from A

by deleting the kth row and lth column, with Bkl defined
similarly. Set Mkl = det(Akl),M

′
kl = det(Bkl), Ckl =

(−1)k+lMkl and C ′
kl = (−1)k+lM ′

kl.
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Since B is obtained from A by exchanging the first and
ith rows, det(B) = −det(A). By Exercise 1

det(B) = b11C
′
11 + · · ·+ b1nC

′
1n.

Note that b1j = aij . Also, the matrix B1j is obtained from
the matrix Aij by moving the first row to the (i − 1)st

row. Note that this can be obtained by exchanging the
first and second row of A1j then exchanging the sec-
ond and third rows of that matrix, and continuing until
we exchange the (i − 2)nd and (i − 1)st rows. Thus,
there are i− 2 exchanges which implies that det(B1j) =

(−1)i−2det(Aij) = (−1)idet(Aij). Thus,

M ′
1j = (−1)iMij .

It then follows that

C ′
1j = (−1)1+jM ′

1j =

(−1)1+j(−1)iMij = (−1)1+i+jMij = −Cij .

Putting this together we get

−det(A) = det(B) = ai1(−Ci1) + · · ·+ ain(−Cin)

Multiplying by -1 we get

det(A) = ai1Ci1 + · · ·+ ainCin

2. Let B = Atr. Denote the (i, j)−entry of B by bij
and the (i, j)−cofactor by C ′

ij . By Exercise 3, det(B) =

det(A). By exercise 2 for any j

det(B) = bj1C
′
j1 + bj2C

′
j2 + · · ·+ bjnC

′
jn.

Since B is the transpose of A, bji = aij and C ′
ji = Cij .

Thus,

det(A) = det(B) = a1jC1j + a2jC2j + · · ·+ anjCnj

3. Let B be an orthonormal basis of V. Then det(T ) =

det(MT (B,B)) and det(A∗) = det(MT∗(B,B)). How-
ever, if A = MT (B,B) then MT∗(B,B) = A

tr
. Then

det(T ∗) = det(A
tr
) = det(A) = det(T ).

4. If v =



c1
...
cn


 then Jnv is the vector all of whose en-

tries are equal to c1+· · ·+cn. Thus, Jnjn =




n

n
...
n


 = njn

and jn is an eigenvector with eigenvalue n. This proves i.

If follows from the previous paragraph that Jnvi =

0. The sequence (v1, . . . ,vn−1) is linearly independent
and spans a subspace of dimension n − 1 contained
in null(Jn). Since null(Jn) is a proper subspace of
Rn, Span(v1, . . . ,vn−1) = null(Jn). This proves ii).

iii) Since jn /∈ Span(v1, . . . ,vn−1) the sequence B =

(v1, . . . ,vn−1, jn) is linearly independent. Since there
are n vectors and dim(Rn) = n, B is a basis for Rn.

5. Ajn = (aIn + bJn)jn =

(aIn)jn + (bJn)jn = ajn + (bn)jn = [a+ bn]jn.

Thus, jn is an eigenvector of A with eigenvalue a+ bn.

On the other hand, Avi = (aIn + bJn)vn =

(aIn)vi + (bJn)vi = avi.

This shows that each vi is an eigenvector with eigenvalue
a. Thus, B = (v1, . . . ,vn−1, jn) is a basis of eigenvectors
for A with eigenvalues a with multiplicity n−1 and a+bn

with multiplicity 1. This implies that A is similar to the
diagonal matrix with n − 1 entries equal to a and one
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entry equal to a + bn. The determinant of this diagonal
matrix is the product of the diagonal entries and is equal
to an−1(a+bn). Since A is similar to this diagonal matrix,
det(A) = an(a+ bn).

6. We proceed by induction starting with n = 2

as the base case. Direct computation shows that

det(

(
1 1

α1 α2

)
) = α2 − α1. Thus, assume the result

holds for n − 1. We will use properties of determinants
of matrices to compute the determinant of




1 1 . . . 1

α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

... . . .
...

αn−1
1 αn−1

2 . . . αn−1
n




We begin working with the transpose




1 α1 . . . αn−1
1

1 α2 . . . αn−1
2

...
... . . .

...
1 αn . . . αn−1

n


 .

Subtract the first row from all the other rows to get the
following matrix which has the same determinant:




1 α1 . . . αn−1
1

0 α2 − α1 . . . αn−1
2 − αn−1

1
...

... . . .
...

0 αn − α1 . . . αn−1
n − αn−1

1




By Exercise 2 we can use a cofactor in the first column
to compute the determinant. Since the only non-zero en-
try is in the (1,1)-position the determinant is equal to the
determinant of the following (n− 1)× (n− 1)−matrix




α2 − α1 α2
2 − α2

1 . . . αn−1
2 − αn−1

1

α3 − α1 α2
3 − α2

1 . . . αn−1
3 − αn−1

1
...

... . . .
...

αn − α1 α2
n − α2

1 . . . αn−1
n − αn−1

1




We can factor αk − α1 from (k − 1)st row to get the
determinant is∏n

k=2(αk − α1) times the determinant of




1 α2 + α1 . . . αn−2
2 + αn−3

2 α1 + · · ·+ αn−2
1

1 α3 + α1 . . . αn−2
3 + αn−3

3 α1 + · · ·+ αn−2
1

...
... . . .

...
1 αn + α1 . . . αn−2

n + αn−3
n α1 + · · ·+ αn−2

1




We need to compute the determinant of the matrix


1 α2 + α1 . . . αn−2
2 + αn−3

2 α1 + · · ·+ αn−2
1

1 α3 + α1 . . . αn−2
3 + αn−3

3 α1 + · · ·+ αn−2
1

...
... . . .

...
1 αn + α1 . . . αn−2

n + αn−3
n α1 + · · ·+ αn−2

1




Take its transpose. Then subtract α1 times the (n − 2)nd

row from the (n − 1)st row, the α1 times the (n − 3)rd

row from the (n − 2)st row and continue, subtracting α1

times the second row from the third row and α1 times the
first row from the second row. The matrix obtained is




1 1 . . . 1

α2 α3 . . . αn

α2
2 α2

3 . . . α2
n

...
... . . .

...
αn−2
2 αn−2

3 . . . αn−2
n




By the induction hypothesis, the determinant of this
matrix is

∏
2≤j<k≤n(αk − αj). Multiplying this by∏

1<j≤n(αj − α1) we obtain the desired formula.

7. Construct the matrix A′ from the matrix A by replacing
the ith row with the jth row. Note that the (i, k)−cofactor
of A′ is the same as the (i, k)−cofactor of A which we
denote by Cik.

Since two rows of A′ are identical, det(A′) = 0. On the
other hand, computing the determinant of A′ using the
cofactor expansion in the ith row of A′ we get

0 = det(A′) = aj1Ci1 + aj2Ci2 + · · ·+ ajnCin
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8. The (i, i)−entry of AAdj(A) is equal to

ai1Ci1 + ai2Ci2 + · · ·+ ainCin

By Exercise 2 this is det(A). On the other hand if i �= j

then the (i, j)−entry is

ai1Cj1 + ai2Cj2 + · · ·+ ainCjn

which is zero by Exercise 7.

Putting these together we have AAdj(A) = det(A)In.

9. Since the entries of A and A−1 are integers we have
det(A), det(A−1) are integers. Since det(A)det(A−1) =

1 either det(A) = det(A−1) = 1 of det(A) =

det(A−1) = −1.

10. Since A is an integer matrix, Adj(A) is an integer
matrix. By Exercise 9, AAdj(A) = det(A)In = εIn
with ε ∈ {−1, 1}. Set B = εAdj(A), an integer matrix.
Then AB = In from which it follows that BA = In and
B = A−1.

11. If T is a Hermitian operator then there exists a basis
B of V such that MT (B,B) is diagonal with real entries.
Then det(T ) = det(MT (B,B)) is a real number.

12. T ∗T is a positive operator, whence diagonalizable
with non-negative real eigenvalues. Therefore det(T ∗T )

is non-negative. If T is not invertible then det(T ∗T ) = 0.

On the other hand, if T is invertible then T ∗T is invertible
and hence det(T ∗T ) �= 0 whence det(T ∗T ) > 0.

13. Let B be an orthonormal basis for V and set A =

MT (B,B). Then A is an orthogonal matrix, that is,
A−1 = Atr. Then

1 = det(In) = det(AA−1) = det(AAtr) =

det(A)det(Atr) = det(A)2.

Thus, det(T ) = det(A) ∈ {−1, 1}.

14. Let B be an orthonormal basis of V and set A =

MT (B,B). Then A is a unitary matrix, that is, A−1 =

A
tr
. Then det(A−1) = det(A). Then 1 = det(In) =

det(AA−1) = det(A)det(A−1) = det(A)det(A) =‖
det(A) ‖2 . Thus, ‖ det(T ) ‖=‖ det(A) ‖= 1.

15. Assume dim(V ) = n = 2k + 1. Recall this means
that T ∗ = −T. Note that for a scalar c, det(cT ) =

cndet(T ). Therefore det(T ) = det(T ∗) = det(−T ) =

(−1)2k+1det(T ) = −det(T ). Thus, det(T ) = 0.

16. The assumption implies that the columns of the matrix
are linearly dependent:

v1 − v2 + v3 − · · · − v2k + v2k+1 = 0.

Thus, the matrix is not invertible and det(A) = 0.

17. Let A be such a matrix. Since we are not con-
cerned about signs, by multiplying the first row by -1, if
necessary, we can assume that the (1,1)-entry is 1. Use
Gaussian elimination to make all the other entries in the
first column zero and denote this matrix by B. Then
det(B) = ±det(A). Let bij denote the entries of B. Then
for i, j ≥ 2, bij ∈ {−2, 0, 2}. Write bij = 2cij where
cij ∈ {−1, 0, 1} so that

B =




1 1 1 . . . 1

0 2c22 2c23 . . . 2c2n
...

...
... . . .

...
0 2cn2 2cn3 . . . 2cnn




Then det(B) = 2n−1det(C) where

C =




1 1 1 . . . 1

0 c22 c23 . . . c2n
...

...
... . . .

...
0 cn2 cn3 . . . cnn




Since C is an integer matrix det(C) is an integer.

18. Since at most one row has no zeros we can assume
that all rows below the first have at least one zero and
therefore there at least n− 1 zeros. On the other hand we
claim that the matrix
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A =




1 1 1 . . . 1

1 0 1 . . . 1
...

...
... . . .

...
1 1 1 . . . 0




is invertible.

After subtracting the first row from each subsequent row
we get the matrix

B =




1 1 1 . . . 1

0 −1 0 . . . 0
...

...
... . . .

...
0 0 0 . . . −1




Then det(A) = det(B) = ±1.

19. Player 2 should apply the following strategy: if Player
1 places an entry in position (i, j) with i > 2 then Player 2
places an arbitrary entry in a position (k, l) with k > 2. If
Player 1 puts a number b in position (i, j) with i ∈ {1, 2}
then Player 2 puts the same number b in position (k, j)

where {i, k} = {1, 2}. When the matrix is filled the first
and second rows will be identical and the matrix will have
determinant zero.

20. Taking determinants we get det(AB) =

det(A)det(B) = det(BA). On the other hand
det(−BA) = (−1)2k1+1det(BA) = −det(BA). There-
fore det(AB) = −det(AB) and so is zero. Then either
det(A) = 0 or det(B) = 0 so either A is not invertible or
B is not invertible.

7.3. Uniqueness of the
Determinant

1. The proof is by induction on j− i. If j− i = 1 this fol-
lows from the definition of an alternating form. Assume
the result for t and assume that ui = uj with j−i = t+1.

By Lemma (7.10)

f(u1, . . . ,ui, . . . ,uj−1,uj , . . . ,um) =

−f(u1, . . . ,ui, . . . ,uj ,uj−1 . . . ,um)

However, by the inductive hypothesis
f(u1, . . . ,ui, . . . ,uj ,uj−1 . . . ,um) = 0.

2. We previously proved that every invertible matrix is a
product of elementary matrices. This implies that every
invertible operator is a product of elementary operators.

3. We demonstrate this for m = 2 the proof of general m
is similar. Let f, g ∈ L(V 2,W ). We need to show that
f + g ∈ L(V 2,W ). Let v1,v2,u ∈ V. Then

(f + g)(v1 + v2,u) = f(v1 + v2,u) + g(v1 + v2,u) =

[f(v1,u) + f(v2,u)] + [g(v1,u) + g(v2,u)] =

[f(v1,u) + g(v1,u)] + [f(v2,u) + g(v2,u)] =

(f + g)(v1,u) + (f + g)(v2,u)

That (f+g)(u,v1+v2) = (f+g)(u,v1)+(f+g)(u,v2)

is proved in exactly the same way.

Now let u,v ∈ V and c is a scalar. We need to prove
(f + g)(cu,v) = (f + g)(u,v) = c(f + g)(u,v).

(f + g)(cu,v) = f(cu,v) + g(cu,v) =

cf(u,v) + cg(u,v) = c[f(u,v) + g(u,v)] =

c[(f + g)(u,v)] = c(f + g)(u,v)

Likewise

(f + g)(u, cv) = f(u, cv) + g(cu, cv) =

cf(u,v) + cg(u,v) = c[f(u,v) + g(u,v)] =

c[(f + g)(u,v)] = c(f + g)(u,v)

Now assume f ∈ L(V 2,W ) and c is a scalar. We need to
prove that cf ∈ L(V 2,W ). Let v1,v2,u ∈ V. Then
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(cf)(v1 + v2,u) = c[f(v1 + v2,u)] =

c[f(v1,u) + f(v2,u)] = cf(v1,u) + cf(v2,u) =

(cf)(v1,u) + (cf)(v2,u).

In exactly the same way we prove that (cf)(u,v1+v2) =

(cf)(u,v1) + (cf)(u,v2).

Finally, we need to show that if d is a scalar and u,v ∈ V

then (cf)(du,v) = (cf)(u, dv) = d[(cf)(u,v)].

(cf)(du,v) = c[f(du,v)] = c[df(u,v)] =

(cd)f(u,v) = (dc)f(u,v) = d[cf(u,v)] =

d[(cf)(u,v)].

Similarly,

(cf)(u, dv) = c[f(u, dv)] = c[df(u,v)] =

(cd)f(u,v) = (dc)f(u,v) = d[cf(u,v)] =

d[(cf)(u,v)].

4. Again we prove this for m = 2. The general case
is similar. We need to prove the following: i) If f, g ∈
Alt(V 2,W ) and u ∈ V then (f + g)(u,u) = 0W ; and
ii) If f ∈ Alt(V 2,W ), c is a scalar and u ∈ V then
(cf)(u,u) = 0W .

i) (f + g)(u,u) = f(u,u) + g(u,u). Since f, g ∈
Alt(V 2,W ) we have

f(u,u) + g(u,u) = 0W + 0W = 0W .

ii) (cf)(u,u) = c[f(u,u)] = c0W = 0W .

5. Assume m > n = dim(V ) and f ∈ Alt(V m,W ). Let
(u1, . . . ,um) be a sequence from V. Since m is greater
than the dimension of V the sequence is linearly depen-
dent. By Lemma (7.11) f(u1, . . . ,um) = 0W .

6. We prove this for (i, j) = (1, 2). We first show that f12
is alternating:

f12(




a1
a2
a3
a4


 ,




a1
a2
a3
a4


) = a1a2 − a2a1 = 0.

We prove additive in the first varialbe:

f12(




a1
a2
a3
a4


+




b1
b2
b3
b4


 ,




c1
c2
c3
c4


) =

(a1 + b1)c2 − (a2 + b2)c1 =

(a1c2 + b1c2)− (a2c1 + b2c1) =

(a1c2 − a2c1) + (b1c2 − b2c1) =

f12(




a1
a2
a3
a4


 ,




c1
c2
c3
c4


) + f12(




b1
b2
b3
b4


 ,




c1
c2
c3
c4


)

A similar argument shows that f12 is additive in the sec-
ond argument.

We now prove that f12 has the scalar property in the first
variable

f12(c




a1
a2
a3
a4


 ,




b1
b2
b3
b4


) = f12(




ca1
ca2
ca3
ca4


 ,




b1
b2
b3
b4


) =

(ca1)b2 − (ca2)b1 = c(a1b2)− c(a2b1) =

c[a1b2 − a2b1] = cf12(




a1
a2
a3
a4


 ,




b1
b2
b3
b4


)
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The scalar property in the second variable is proved simi-
larly.

7. Let ei denote the ith standard basis vector of F4 and
set eij = (ei, ej) for 1 ≤ i, j ≤ 4. Then any alter-
nating form f ∈ Alt(V 2,F) is uniquely determined by
its values on eij . Next note that fij(ekl) = δikδjl. This
implies that (f12, . . . , f34) is linearly independent: Sup-
pose

∑
1≤i<j≤4 aijfij = 0. Evaluating at ekl we find that

akl = 0.

We next show that (f12, . . . , f34) spans L(V 2,F). Let
f ∈ Alt(V 2,F) and let aij be equal to f(eij). Set
g = a12f12 + · · ·+ a34f34. Then g ∈ Alt(V 2,F). More-
over, g(eij) = aij = f(eij) which implies that f = g.

8. This follows since the determinant is an alternating
map of the columns of the matrix.

9. Again let ei be the ith standard basis vector. Let
eijk denote the ordered triple (ei, ej , ek) where 1 ≤
i < j < k ≤ 4. Then any alternating form f ∈
Alt(V 3,F) is uniquely determined by its values on
(e123, e124, e134, e234).

Next note that gl(eijk) = 1 if {i, j, k, l} = {1, 2, 3, 4}
and is zero otherwise. As in Exercise 8 this implies that
(g1, g2, g3, g4) is linearly independent. We show that it
spans Alt(V 3,F).

Let f ∈ Alt(V 3,F) and set aijk = f(eijk) and g =

a234g1 + a134g2 + a124g3 + a123g4. Then g(eijk) =

aijk and therefore g = f. Thus, (g1, g2, g3, g4) spans
Alt(V 3,F) and so is a basis.
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Chapter 8

Bilinear Maps and Forms

8.1. Basic Properties of
Bilinear Maps

1. Let v1,v2 ∈ V,w ∈ W. Since each fi is bilinear we
have fi(v1 + v2,w) = fi(v1,w) + fi(v2,w). We then
have

F (v1 + v2,w) =

s∑
i=1

fi(v1 + v2,w) =

s∑
i=1

[fi(v1,w) + fi(v2,w)] =

s∑
i=1

fi(v1,w) +

s∑
i=1

fi(v2,w) =

F (v1,w) + F (v2,w)

For v ∈ V,w1,w2 ∈ W that F (v,w1 + w2) =

F (v,w1) + F (v,w2) is proved in exactly the same way.

Now let v ∈ V,w ∈ W and c ∈ F. Since each fi is
bilinear, fi(cv,w) = cfi(v,w) = fi(v, cw). We then
have

F (cv,w) =

s∑
i=1

fi(cv,w) =

s∑
i=1

cfi(v,w) =

c

s∑
i=1

fi(v,w) = cF (v,w).

F (v, cw) =

s∑
i=1

fi(v, cw) =
s∑

i=1

cfi(v,w) =

c

s∑
i=1

fi(v,w) = cF (v,w).

2. Let v1,v2 ∈ Fm,w ∈ Fn. Then

f(v1 + v2,w) = (v1 + v2)
trAw = (vtr

1 + vtr
2 )Aw =

vtr
1 Aw + vtr

2 Aw = f(v1,w) + f(v2,w)

If v ∈ Fm,w1,w2 ∈ Fn then

f(v,w1 +w) = vtrA(w1 +w2) =

vtrAw1 + vtrAw2 = f(v,w1) + f(v,w2).

Assume v ∈ Fm,w ∈ Fn and c ∈ F then

f(cv,w) = (cv)trAw = cvtrAw =

c(vtrAw) = cf(v,w)

f(v, cw) = vtrA(cw) = c(vtrAw) = cf(v,w).

3. By additivity in the first variable we have

f(v,w) = f(
m∑
i=1

civi,

n∑
j=1

djwj) =
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m∑
i=1

f(civi,

n∑
j=1

djwj)

By additivity in the second variable we have

=

m∑
i=1

(

n∑
j=1

f(civi, djwj)

By homogeneity we have f(civi, djwj) =

(cidj)f(vi,wj) = (cidj)aij and consequently

f(v,w) =

m∑
i=1

n∑
j=1

cidjaij =




c1
c2
...
cm




tr

A




d1
d2
...
dn




4. Let (v1, . . . ,vm) be a basis for V, (w1, . . . ,wn) a
basis for W and (x1, . . . ,xs) a basis for X. Let fklt :

V ×W → X be defined by

fklt(

m∑
i=1

aivi,

n∑
j=1

bjwj) = akblxt.

Then {fklt|1 ≤ k ≤ m, 1 ≤ l ≤ n, 1 ≤ t ≤ s} is a basis
for B(V,W ;X).

5. For w ∈ W denote by F the map from V to F given by
F (w)(v) = f(v,w). This is a linear transformation from
W to V ′ = L(V,F). Since dim(V ′) = dim(V ) = m by
the rank-nullity theorem dim(Ker(F )) ≥ n − m. The
result follows since RadR(f) = Ker(F ).

6. Let A =

(
0 1

0 0

)
. Set V = F2 and define f :

V × V → F by f(v,w) = vtrAw. Then RadL(f) =

{
(
0

a

)
|a ∈ F} and RadR(f) = {

(
b

0

)
|b ∈ F}.

7. Let A =



1 1 0

0 1 0

0 0 0


 . Set V = F3 and define f :

V × V → F by f(v,w) = vtrAw. Then RadR(f) =

RadL(f) = Span(



0

0

1


). However,

f(



1

0

0


 ,




1

−1

0


) = 0

f(




1

−1

0


 ,



1

0

0


) = 1.

8. Let A =

(
1 1

0 1

)
. Set V = F2 and define f : V ×

V → F by f(v,w) = vtrAw. Then

f(

(
1

0

)
,

(
1

−1

)
) = 0

f(

(
1

−1

)
,

(
1

0

)
) = 1

9. Define f+ : V × V → F by f+(v,w) = 1
2 [f(v,w) +

f(w,v)]. Then f+ is symmetric. Similarly, define f− :

V ×V → F by f−(v,w) = 1
2 [f(v,w)−f(w,v)]. Then

f− is alternating and f+ + f− = f.

10. Since A = ImAIn every m × n matrix is equivalent
to itself and the relation of equivalence is reflexive.

Suppose B is equivalent to A. Then there exists an invert-
ible m × m matrix R and an invertible n × n matrix Q

such that B = RAQ. Then A = R−1BQ−1 and so A is
equivalent to B.

Finally, assume B is equivalent to A and C is equivalent
to B. Then there are invertible m × m matrices R1, R2

and invertible n× n matrices Q1, Q2 such that

B = R1AQ1, C = R2BQ2.

Then C = (R2R1)A(Q1Q2). Since the product of invert-
ible two invertible matrices is invertible, R2R1 and Q1Q2

are invertible and therefore C is equivalent to A.

K23692_SM_Cover.indd   90 02/06/15   3:12 pm



8.2. Symplectic Space 83

11. Assume the m × n matrix A has rank r. We
prove that A is equivalent to the matrix Mr

m×n =(
Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
. The result will follow

from this.

Use Gaussian elimination to obtain the reduced echelon
form of A. Since A has rank r there is an r × (n − r)

matrix C such that the reduced echelon form of A is

B =

(
Ir C

0(m−r)×r 0(m−r)×(n−r)

)
.

This implies that there are elementary matri-
ces E1, . . . , Es such that B = Es . . . E1A. Set
R = Es . . . E1. Then R is an invertible matrix. Next
consider Btr =

(
Ir 0r×(m−r)

Ctr 0(n−r)×(m−r)

)

The reduced echelon form of this matrix is(
Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
. Thus, as above, there is

an invertible n × n matrix P such that PBtr = Mr
n×m.

Then RAP tr = BP tr = (PBtr)tr = Mr
n×m = Mr

m×n

as claimed.

12. Since Itrn AIn = InAIn = A every n × n matrix is
congruent to itself and the relation of congruence is re-
flexive.

Assume B is congruent to A so that there is an in-
vertible n × n matrix P such that B = P trAP. Set
Q = P−1. Then Qtr = (P−1)tr = (P tr)−1. Then
A = (P tr)−1BP−1 = QtrBQ and so A is congruent
to B. This implies the relation is symmetric.

Finally, assume that B is congruent to A and C is con-
gruent to B. Then there are invertible matrices P,Q such
that B = P trAP,C = QtrBQ. Substituting in the latter
expression we get

C = Qtr(P trAP )Q = [QtrP tr]A[PQ] = [PQ]trA[PQ].

Since P,Q are invertible n× n matrices, the product PQ

is invertible. Thus, C is congruent to A and the relation is
transitive.

13. Let BV = (v1, . . . ,vm) be a basis for V and BW =

(w1, . . . ,wn) be a basis for W. Let aij = f(vi,wj)

and let A be the m × n matrix with entries aij . Set
r = rank(A).

Let v ∈ V and w ∈ W. Then v ∈ RadL(f)

if and only if [v]BV
is the null space of Atr and

w ∈ RadR(f) if and only if [w]BW
is in the null

space of A. Since the rank(Atr) = rank(A) we
have dim(RadL(f)) = nullity(Atr) = m − r

and dim(RadR(f)) = nullity(A) = n − r. Then
dim (V/RadL(f)) = m− (m− r) = r = n− (n− r) =

dim (W/RadR(f)).

14. By Exercise 13, dim(V ) − dim(RadL(f)) =

dim(W ) − dim(RadR(f)). Since dim(RadL(f)) =

dim(RadR(f)) = 0 it follows that dim(V ) = dim(W ).

15. Since f is alternating, f(u+ v,u+ v) = f(u,u) =

f(v,v) = 0. However, by bilinearity 0 = f(u + v,u +

v) = f(u,u)+f(u,v)+f(v,u)+f(v,v) = f(u,v)+

f(v,u) from which the result follows.

16. Note that since f is non-degenerate, dim(V ) =

dim(W ). Let F : W → V ′ be the map given by
F (w)(v) = f(v,w). Then F is a linear transforma-
tion. Since f is non-degenerate, Ker(F ) = RadR(f) =

{0W } so F is injective. Since dim(V ′) = dim(V ) =

dim(W ) it is then the case that F is an isomorphism. Let
gi : V → F be the linear form given by gi(

∑n
j=1 ajvj) =

ai and let wi ∈ W such that F (wi) = gi. Then
(w1, . . . ,wn) is the required basis.

8.2. Symplectic Space

1i) S−1 is an isomorphism of W onto V. We need to
show if w1,w2 ∈ W then 〈S−1(w1), S

−1(w2)〉V =

〈w1,w2〉W . Set vi = S−1(wi). Then S(vi) = wi. Since
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S is an isometry we have

〈S−1(w1), S
−1(w2)〉V = 〈v1,v2〉V

= 〈S(v1), S(v2)〉W = 〈w1,w2〉.

ii) Let w1,w2 ∈ W. Then

〈w1,w2〉W = 〈(S(w1), S(w2)〉V =

〈T (S(w1)), T (S(w2))〉X = 〈(TS)(w1), (TS)(w2)〉X

2. Let u ∈ U be arbitrary and w1,w2 ∈ U⊥. Then
〈w1,u〉 = 〈w2,u〉 = 0. Then

〈w1 +w2,u〉 = 〈w1,u〉 =

〈w1,u〉+ 〈w2,u〉 = 0 + 0 = 0.

Since u is arbitrary, w1 +w2 ∈ U⊥.

Next assume u ∈ U,v ∈ V ⊥ and c ∈ F. Then
f(cv,u) = c(u,v) = c× 0 = 0 and cv ∈ U⊥.

3. Clearly U ⊂ (U⊥)⊥. By part i) of Lemma (8.12) we
have dim(V ) = dim(U) + dim(U⊥). Applying this to
U⊥ we also get dim(V ) = dim(U⊥) + dim((U⊥)⊥).

Consequently, dim((U⊥)⊥) = dim(V ) − dim(U⊥) =

dim(U). Since U ⊂ (U⊥)⊥ it follows that U = (U⊥)⊥.

4) Suppose w ∈ Rad(U⊥). Then w ∈ U⊥ and w ∈
(U⊥)⊥ = U. However, since U is non-degenerate, U ∩
U⊥ = {0} and so w = 0.

5. Set k = dim(U). By part i) of Lemma (8.12) we
have dim(V ) = dim(U) + dim(U⊥). However, since
U is totally isotropic, U ⊂ U⊥ so that k = dim(U) ≤
dim(U⊥). Then 2n = dim(V ) = dim(U)+dim(U⊥) ≥
2dim(U) = 2k. Therefore, k ≤ n.

6. Since U is totally isotropic, U ⊂ U⊥. Since 〈u,w〉 =
0 for all u ∈ U and w ∈ U⊥, in fact, U ⊂ Rad(U⊥). On
the other hand, Rad(U⊥) = U⊥ ∩ (U⊥)⊥ = U⊥ ∩ U ⊂
U.

7. Set T = T(v,c). We compute:

〈T (u), T (w)〉 = 〈u+ c〈u,v〉v,w + c〈w,v〉v〉 =

〈u,w〉+ 〈u, c〈w,v〉v〉+

〈c〈u,v〉v,w〉+ 〈c〈u,w〉v, c〈w,v〉v〉 =

〈u,w〉 = c〈u,v〉〈w,v〉+

c〈u,v〉〈v,w〉+ c2〈u,v〉〈w, 〉〈v,v〉.

Since 〈 , 〉 is alternating 〈v,v〉 = 0 and 〈v,w〉 =

−〈w,v〉. Thus,

c〈u,v〉〈w,v〉+ c〈u,v〉〈v,w〉+ c2〈u,v〉〈w, 〉〈v,v〉 =

〈u,w〉+ c〈u,v〉〈w,v〉 − c〈u,v〉〈w,v〉 =

〈u,w〉

8. Set T = T(v,c) and S = T(w,d). For u ∈ V we have
(TS)(u) =

u+ d〈u,w〉w + c〈u,v〉v + (cd)〈u,w〉〈w,v〉v.

On the other hand, (ST )(u) =

u+ c〈u,v〉v + d〈u,w〉w + (dc)〈u,v〉〈v,w〉w

If 〈v,w〉 = 0 then (ST )(u) = (TS)(u) = u +

c〈u,v〉v + d〈u,w〉w and S and T commute.

Conversely, assume ST = TS. Then 〈u,w〉〈w,v〉v =

〈u,v〉〈v,w〉w for every vector u. If (v,w) is linearly
dependent then clearly v ⊥ w. Assume (v,w) is lin-
early independent. Then we must have 〈u,w〉〈w,v〉 =

0 = 〈u,v〉〈v,w〉 for every vector u. Since a vector space
of dimension n cannot be the union of two subspaces of
dimension n − 1 , particular, V �= v⊥ ∪ w⊥. Choose
u ∈ V such that v �⊥ v �⊥ w. It then must be the case
that 〈v,w〉 = 0.
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9. The number of non-zero vectors is q2n − 1. There are
this many choices for u. There are q2n−1 vectors in u⊥

and hence q2n−q2n−1 vectors x such that 〈u,x〉 �= 0. For
any such vector x there is a unique vector v in Span(x)

such that 〈u,v〉 = 1. Since there are q − 1 non-zero vec-
tors in Span(x) there are q2n−q2n−1

q−1 = q2n−1 vectors v
such that 〈u,v〉 = 1. Thus, the number of such pairs is
q2n−1(q2n − 1).

10. We proceed by induction to prove that the number
of hyperbolic bases in a non-degenerate 2n−dimensional
symplectic space over Fq is qn

2 ∏n
i=1(q

2i − 1).

The base case, n = 1 follows from Exercise 9. Sup-
pose there are qn

2 ∏n
i=1(q

2i − 1) hyperbolic bases in a
non-degenerate 2n−dimensional symplectic space over
Fq. and assume that (V, 〈 , 〉) is a non-degenerate sym-
plectic space of dimension 2n + 2. By Exercise 9 there
are q2n+1(q2n+2 − 1) pairs (u,v) with 〈u,v〉 = 1. Set
W = Span(u,v)⊥. Then W is a non-degenerate space
of dimension 2n. By the inductive hypothesis there are
qn

2 ∏n
i=1(q

2i − 1) hyperbolic bases B in W. We ob-
tain a hyperbolic basis for V by adjoining (u,v) to B.
Since there are q2n+1(q2n+2 − 1) choices of (u,v) and
qn

2 ∏n
i=1(q

2i − 1) choices of B there are

q2n+1(q2n+2 − 1)qn
2

n∏
i=1

(q2i − 1) =

qn
2+2n+1

n+1∏
i=1

(q2i − 1) =

q(n+1)2
n+1∏
i=1

(q2i − 1)

Now suppose dim(V ) = 2n. If we fix a hyperbolic ba-
sis B then any isometry T takes B to a hyperbolic basis
T (B′). On the other hand, T is uniquely determined by
its image on a basis. Therefore there is a one-to-one cor-
respondence between isometries and hyperbolic bases and
this implies that |Sp(V )| = qn

2 ∏n
i=1(q

2i − 1).

11. Clearly, U ⊂ (U⊥)⊥. By Lemma (8.12) i)
dim(V ) = dim(U) + dim(U⊥) = dim(U⊥) +

dim((U⊥)⊥).Therefore dim((U⊥)⊥) = dim(U) so we
have equality.

8.3. Quadratic Forms and
Orthogonal Space

1i) Let v ∈ V2 and set u = S−1(v). Then S(u) = v.

Thus,

φ1(S
−1(v)) = φ1(u) = φ2(S(u)) = φ2(v).

ii) Let u ∈ V1. Then φ1(u) = φ2(S(u)) =

φ3(T (S(u))) = φ3((TS)(u)).

2. Set n = dim(V ). A vector v ∈ Rad(V ) if and
only if [v]B is in the null space of the matrix A. There-
fore dim(Rad(V )) = nullity(A). Then the rank of
(V, φ) is equal to dim(V ) − dim(Rad(V )) = n −
dim(Rad(V )) = n− nullity(A) = rank(A).

3. ρ(y) = y − 2 〈y,x〉
〈x,x〉x = y since 〈y,x〉 = 0. On the

other hand,

ρ(x) = x− 2
〈x,x〉
〈x,x〉

x = x− 2x = −x.

4. Choose a singular vector u and let u∞ = u. Let
v be a vector in u⊥ but not a multiple of u so that
u⊥ = Span(u,v). The vector v is non-singular and, in
fact, for every c ∈ F,vc = cu + v ∈ u⊥ and is non-
singular. Then v⊥

c is a non-singular two dimensional sub-
space and contains the singular vector u. There is then a
second singular vector which we denote by uc.

On the other hand, suppose w is a singular vector,
Span(w) �= Span(u). Then w⊥ has dimension two and
w⊥ �= u⊥ = Span(u,v). It follows that w⊥ intersects
Span(u,v) in a one-dimensional subspace different from
u and therefore contains a vector au + bv with b �= 0.

Then w is orthogonal to a
bu + v and hence w = uc
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where c = a
b . Thus, we have a one-to-one correspondence

between P(V ) and F ∪ {∞}.

5. Replacing u2 and v2 by scalar multiples, if necessary,
we can assume that 〈u1,u2〉 = 〈v1,v2〉 = 1. By Lemma
(8.25) there exists an isometry T such that T (u1) = v1.

Set v′
2 = T (u2). Then since T is an isometry 〈v1,v

′
2〉 =

〈u1,u2〉 = 〈v1,v2〉 = 1. Now by Lemma (8.26) there
exists an isometry S such that S(v1) = v1, S(v

′
2) = v2.

Then (ST ) is an isometry and (ST )(u1) = T (v1) =

v1, (ST )(u2) = S(v′
2) = v2.

6. Let U,W be totally singular subspaces which are not
properly contained in a totally isotropic subspace. As-
sume dim(U) = k, dim(W ) = l with k ≤ l. Choose
any subspace X of W of dimension k. Since dim(U) =

dim(X) = k U and X are isomorphic. Since U and X

are totally singular any isomorphism S : X → U is an
isometry. By Witt’s theorem there is an isometry of Ŝ

such that Ŝ restricted to X is S. Now set W ′ = Ŝ(W ).

Then W ′ is a totally singular subspace which contains
U. By our assumption that U is a maximal totally singu-
lar subspace it follows that W ′ = U and so dim(U) =

dim(W ′) = dim(W ).

7. The proof is by induction on n = dim(V ). Sup-
pose n = 1. Let V = Span(v) and T an isome-
try, T �= IV . Then T (v) = −v and T = ρv . As-
sume now that dim(V ) = n + 1 and the result has been
proved for spaces of dimension n. Let v ∈ V be a non-
singular vector and T an isometry. Set w = T (v). Then
φ(w) = φ(T (v)) = φ(v) �= 0. By the proof of Theorem
(8.11) there is an isometry S which is a product of at most
two reflections such that S(v) = w. Set T ′ = S−1T .
Then T ′(v) = v and T ′ leaves w⊥ invariant. The sub-
space v⊥ is non-degenerate. By the inductive hypoth-
esis there are non-singular vectors u1, . . . ,ut from v⊥

such that T ′ restricted to v⊥ is the product of the re-
flections ρi = ρui

restricted to v⊥. It then follows that
T = Sρ1 . . . ρt, a product of reflections.

8. By Exercise 7 an isometry is a product of reflections.
Since det(ρx) = −1 for x non-singular it follows that the
determinant of an isometry is ±1.

9a) φ(T(u,v)(z)) = φ(z + 〈z,v〉u− 〈z,u〉v) =

φ(z) + φ(〈z,v〉u− 〈z,u〉v) + 〈z, 〈z,v〉u− 〈z,u〉v)〉

Since 〈z,v〉u− 〈z,u〉v is a singular vector we get

= φ(z) + 〈z, 〈z,v〉u− 〈z,u〉v)〉 =

φ(z) = 〈z,v〉〈z,u〉 − 〈z,u〉〈z,v〉 =

φ(z).

b) If z ∈ Span(u,v)⊥ then 〈z,u〉 = 〈z,v〉 = 0 and
T(u,v)(z) = z.

c) Since (T(u,v) − IV )(z) = 〈z,v〉u − 〈z,u〉v ∈
Span(u,v) we clearly have Range(T(u,v) − IV ) ⊂
Span(u,v). On the other hand, there exist vectors z1, z2
such that 〈z1,u〉 = 0, 〈z1,v〉 = 1 and 〈z2,u〉 =

1, 〈z2,v〉 = 0.

We then have (T(u,v) − IV )(z1) = 〈z1,v〉u = u. Simi-
larly, (T(u,v) − IV )(z2) = −v.

10a) Set T = T(u,−cv) and S = T(u,cv). Then

S(z) = z + c〈z,v〉u− c〈z,u〉v.

Set w = c〈z,v〉u − c〈z,u〉v. Then w is orthogonal to
u,v and consequently, T (w) = w. Then

(TS)(z) = T (z +w) = T (z) +w =

z − c〈z,v〉u+ c〈z,u〉v +w = z −w +w = z.

b) Set S = T(u,cv), T = T(u,dv). Then

T (z) = z + d〈z,v〉u− d〈z,u〉v.

Set w = d〈z,v〉u − d〈z,u〉v. Then S(w) = w. There-
fore

(ST )(z) = S(z+w) = z+ c〈z,v〉u− c〈z,u〉v+w =
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z + c〈z,v〉u− c〈z,u〉v + d〈z,v〉u− d〈z,u〉v =

z + (c+ d)〈z,v〉u− (c+ d)〈z,u〉v =

T(u,(c+d)v)(z).

11. Set T = T(x,y) then

T (z) = z + 〈z,y〉x− 〈z,x〉y =

z + 〈z, cu+ dv〉(au+ bv)− 〈z, au+ bv〉(cu+ dv) =

z + (ac)〈z,u〉u+ (bd)〈z,v〉v + (ad)〈z,v〉u+

(bc)〈z,u〉v − (ac)〈z,u〉u+

(bd)〈z,v〉v − (ad)〈z,u〉v − (bd)〈z,v〉u =

z + (ad− bc)〈z,v〉u− (ad− bc)〈z,u〉u =

T(u,(ad−bc)v)(z).

12. We compute T(u,dv)(w) :

T(u,dv)(w) = w + 〈w, dv〉u− 〈w,u〉(dv) =

w + d〈w,v〉u = w + du.

Thus, we must take d = c.

13. Assume x ∈ u⊥. Then φ(δu,v(x)) = φ(x +

〈x,v〉φu) = φ(x) + 〈x,v〉2φφ(u) + 〈x, 〈x,v〉φu〉φ =

φ(x) since u is singular and x ⊥ u.

14. Since V = Span(u,w) ⊕ Span(u,w)⊥ there is a
vector z ∈ Span(u,w)⊥ and scalars a and b such that
D(w) = aw + bu + z. Note that φ(aw + bu + z) =

ab + φ(z). Since 0 = φ(w) = φ(D(w)) we have ab +

φ(z) = 0.

Next note that a = 〈aw+ bu+ z,u〉φ = 〈D(w),u〉φ =

〈w,u〉φ = 1.

Now suppose x ∈ Span(u,v)⊥. Then D(x) =

δu,v(x) = x. Consequently,

〈w,x〉φ = 〈D(w), D(x)〉φ = 〈w + bu+ z,x〉φ =

〈w,x〉φ + 〈z,x〉φ.

Therefore 〈z,x〉φ = 0 for every x ∈ Span(u,v)⊥ so
that z ∈ Span(u,v) in which case we can assume that
x is a multiple of v. Thus, there is a scalar c such that
D(w) = w+ cv− c2φ(v)u. Now let x ∈ u⊥ be chosen
such that 〈v,x〉φ = 1. Then D(x) = δu,v(x) = x + u.
We then have

〈w,x〉φ = 〈w + cv − c2φ(v)u,x+ u〉φ =

〈w,x〉φ + c〈v,x〉φ + 〈w,u〉φ =

〈w,x〉φ + c+ 1.

We can finally conclude that c = −1 and D(w) = w −
v + φ(v)u as claimed.

15. By Exercise 14 it suffices to prove for x ∈ u⊥ that
δu,vδu,w(x) = δu,v+w(x).

δu,vδu,w(x) = δu,v(x+ 〈x,w〉φu) =

δu,v(x) + δu,v(〈x,w〉φu) =

x+ 〈x,v〉φu+ 〈x,w〉φu =

x+ (〈x,v〉φ + 〈x,w〉φ)u =

x+ 〈x,v +w〉φu = δu,v+w(x).

16. By Lemma (8.21), V has an orthogonal ba-
sis (v1, . . . ,vn). Order the basis vectors such that
φ(v1), . . . , φ(vr) �= 0 and φ(vk) = 0 for r < k ≤ n.
Set ai = φ(vi) for 1 ≤ i ≤ r and let bi be chosen such
that b2i = ai. Replacing vi, if necessary, with 1

bi
vi we can

assume that φ(vi) = 1 for 1 ≤ i ≤ r and φ(vi) = 0 for
r < i ≤ n. We have shown that the matrix of a quadratic
form over the field F is congruent to one and only one

of the matrices
(

Ir 0r×n−r

0n−r×r 0n− r × n− r

)
. Thus, two

orthogonal spaces of dimension n over F are isometric if
and only if they have the same rank.
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17. Let M be a subspace such that φ(u) > 0 for all non-
zero vectors u ∈ M . Let (v1, . . . ,vm) be an orthogonal
basis of M which exists by Lemma (8.21). As in Exer-
cise 16 we can assume that φ(vi) = 1 for 1 ≤ i ≤ m.
Now suppose M1,M2 ∈ P are maximal with dimensions
mi, i = 1, 2. Let (v1i, . . . ,vmi,i) be an orthonormal ba-
sis of Mi. We claim that m1 = m2. Suppose to the
contrary that m1 �= m2. We may assume and without
loss of generality that m1 < m2. Let σ be the linear
map from U = Span(v12, . . . ,vm1,2) to M1 such that
σ(vj2) = vj1 for 1 ≤ j ≤ m1. Then σ is an isometry. By
Witt’s theorem there exists an isometry S of V such that S
restricted to U is σ. Set M ′

2 = S(M2). Then S(M2) ∈ P
and S(M2) properly contains M1, a contradiction. Thus,
m1 = m2 and the map S is an isometry of V which takes
M2 to M1.

18. By Lemma (8.21) there is an orthogonal ba-
sis (v1,v2,v3) for V . First suppose that at least
two of (v1), φ(v2), φ(v3) are squares, say φ(v1) =

a2, φ(v2) = b2. Then replacing v1 by 1
av1 and v2 by 1

bv2

we can assume that φ(v1) = φ(v2) = 1.

The following is well-known and proved in a first course
in abstract algebra (it depends on the fact that the multi-
plicative group of the field Fq is cyclic): for any c ∈ Fq

there are d, e ∈ Fq such that c = d2 + e2. In particular,
this applies to −φ(v3). Now if d2 + e2 = −φ(v3) then
φ(dv1 + ev2 + v) = 0.

On the other hand if φ(v1) and φ(v2) are non-squares in
Fq then replace φ with dφ where d is a non-square. Then
we can apply the above. Since the singular vectors of φ
and dφ are the same we are done.

19. The proof is by induction on n. If n ≤ 3 then this fol-
lows from Exercise 18. So assume that dim(V ) = n > 3

and the result is true for all spaces of dimension less than
n. Since dim(V ) > 3 by Exercise 18 there is a singular
vector v. By Lemma (8.24) there exists a singular vector
w such that 〈v,w〉φ = 1. Set U = Span(v,w)⊥ which
is non-degenerate of dimension n−2. Set h = �n−3

2 �. By
the inductive hypothesis there exists a totally singular sub-
space M of U, dim(M) = h. Then M ′ = M ⊕ Span(v)

is a totally singular subspace of V, dim(M ′) = �n−1
2 �.

20. When m = 1 there are two singular subspaces of di-
mension one, each with q − 1 non-zero vectors so there
are altogether 2(q − 1) singular vectors when m = 1

which is equal to (qm − 1)(qm−1 + 1). Assume we have
shown that in a space of dimension 2m (maximal Witt in-
dex) there are (qm − 1)(qm−1 + 1) singular vectors and
that dim(V ) = 2(m + 1). Let v,w be singular vec-
tors with 〈v,w〉 = 1 and set U = Span(v,w)⊥. Let
∆(v) be the singular vectors u such that u ⊥ v and
Span(u) �= Span(v) and Γ(v) the singular vectors z

such that v �⊥ z. Count |Γ(v)| first. Note that v⊥ has
dimension 2m − 1 and therefore there are q2m − q2m−1

vectors in V \ v⊥. Let x be any vector such x �⊥ v. Then
in Span(v,x) there are q2 − q which are non-orthogonal
to v. Consequently, the number of non-degenerate two di-
mensional subspaces which contain v is q2m−q2m−1

q2−q . Any
such two dimensional subspace contains q − 1 singular
vectors which are not orthogonal to v and we can con-
clude that

|Γ(v)| = (q − 1)
q2m − q2m−1

q2 − q
= q2m−1 − q2m−2.

Now suppose u ∈ v⊥, Span(u) �= Span(v). Then
Span(u,v) is a totally singular two dimensional sub-
space and has q2−q such vectors. Now w⊥∩Span(u,v)
is a one-dimensional singular subspace contained in U .
By the inductive hypothesis there are (qm−1)(qm−1+1)

singular vectors in U and therefore (qm−1)(qm−1+1)
q−1 such

subspaces. It now follows that

|∆(v)| = (q2 − q)
(qm − 1)(qm−1 + 1)

q − 1
=

q(qm − 1)(qm−1 + 1)

Finally, there are q−1 singular vectors in Span(v). Thus,
the number of singular vectors is

(q − 1) + q(qm − 1)(qm−1 + 1) + q2m−1 − q2m−2
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After simplifying we get (qm+1 − 1)(qm + 1).

21. This follows from the proof of Exercise 20.

22. It follows from Exercises 20 and 21 that the number
of hyperbolic pairs is (qm − 1)(qm−1 + 1)q2m−2. The
result follows from a straight forward induction on m.

23. Need to do induction on m. Assume m = 1.
Let x be an element of V such that φ(x) = 1 and let
y ∈ x⊥ and set d = φ(y). There are then 2(q + 1)

pairs (u,v) such that φ(u) = 1, φ(vv) = d. For any
such pair the linear map τ(ax + by) = au + bv is
an isometry and every isometry arises this way. Thus,
|O(V, φ)| = 2(q + 1). Now assume that m > 1.
We can show by induction that the number of singu-
lar vectors is (qm + 1)(qm−1 − 1) and the number of
hyperbolic pairs is q2m−2(qm + 1)(qm−1 − 1). Then
we can show by induction that the number of sequences
(x1,y1, . . . , xxm−1,ym−1) such that 〈xi,y〉φ = 1 for
1 ≤ i ≤ m − 1 and xi ⊥ xj ,xi ⊥ yj ,yi ⊥ yj for
i �= j is q2(

m
2 )(qm + 1)(q − 1)Πm−1

i=2 (q2i − 1). The or-
der of O(V, φ) is obtained by multiplying this number by
2(q + 1) to get 2q2(

m
2 )(qm + 1)Πm−1

i=1 (q2i − 1).

8.4. Orthogonal Space,
Characteristic Two

1. Let v be a singular vector in (V, φ). By Lemma (8.29)
there is a singular vector w such that 〈v,w〉φ = 1 and
then (v,w) is a basis for V . Suppose x = av + bw is
in Rad(V, φ), Then, in particular, 〈x,v〉φ = 0. However,
〈x,v〉φ = 〈av + bw,v〉φ = b, whence b = 0. Similarly,
a = 0 and x = 0.

2. Suppose to the contrary that dim(M1) �=
dim(M2). Then without loss of generality we can as-
sume dim(M1) = m1 < m2 = dim(M2). Let M ′

2

be a subspace of M2, dim(M ′
2) = m1 and choose bases

(v1,,i, . . . ,vm1,i) for Mi, i = 1, 2. Let σ be the linear
transformation from M1 to M ′

2 such that σ(v2,i) = v1,i.

Then σ is an isometry. By Witt’s theorem there exist an
isometry S of V such that S restricted to M ′

2 = σ. But
then S(M2) is totally singular subspace of V and S(M2)

properly contains M1, a contradiction.

3. By Witt’s theorem there exists an isometry S on V such
that S(X) = Y . Then S(X⊥) = Y ⊥ so that X⊥ and Y ⊥

are isometric.

4. This follows immediately from Theorem (8.15)

5. Span



0

0

1


 and Span



1

1

0


.

6. Set B = BX ∪ BY . Let J =

(
0m Im
Im 0m

)
. Suppose

T is an operator on V and MT (B,B) = M . Then T is
an isometry if and only if M trJM = J . Now let S be an
operator on V and assume that S(X) = X,S(Y ) = Y .

Then MS(B,B) =

(
MX 0m

0m MY

)
. From the above it

follows that S is an isometry if and only if M tr
XMY = Im.

7. Let c be a scalar and v = v1 + v2 a vector in V1 ⊕ V2.
Then

φ(cv) = φ(c(v1 + vv2))

= φ(cv1 + cv2)

= φ1(cv1) + φ2(cv2)

= c2φ1(v1) + c2φ2(v2)

= c2[φ1(v1) + φ2(v2)

= c2φ(v1 + v2) = c2φ(v)

Assume v = v1+v2 and w = w1+w2 with v1,w1 ∈ V1

and v2,w2 ∈ V2. Then

〈v1 + v2,w1 +w2〉φ =

φ([v1+v2]+ [w1+w2])−φ(v1+v2)−φ(w1+w2) =

φ([v1 +w1] + [v2 +w2]−φ(v1 + v2)−φ(w1 +w2) =

φ1(v1 +w1) + φ2(v2 +w2)−
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φ1(v1) + φ2(v2) + φ1(w1) + φ2(w2)) =

[φ1(v1 +w1)− φ1(v1)− φ1(w1)]+

[φ2(v2 +w2)− φ2(v2)− φ2(w2)] =

〈v1,w1〉φ1
+ 〈v2,w2〉φ2

.

8. H1 ⊥ H2 is non-degenerate space of dimension four
and Witt index 2. It therefore suffices to prove that E1 ⊥
E2 has Witt index two. E1 ⊥ E2 is isometric to (F4, φ)

where φ(




a

b

c

d


 = a2 + ab+ b2δ + c2 + d2 + d2δ. Check

that




1

0

1

0


 ⊥




0

1

0

1


 and φ




1

0

1

0


 = φ(




0

1

0

1


 = 0.

8.5. Real Quadratic Forms

1. (π, σ) = (1, 0).

2. (π, σ) = (2, 1).

3. (



−

√
2
2√
2
2

0


 ,



−1

−1

2


 ,




√
3
3√
3
3√
3
3


).

4. (




√
2

−
√
2
2√
2
2


 ,



−2

−1

2


 ,




1
2

1

1


).

5. The number of congruence classes is equal to the num-
ber of triples (π, ν, ζ) ∈ N3 such that π+ν+ ζ = n. This
is
(
n+1
2

)
.

6a) Let m be the Witt index. We know the rank, ρ = n

and π + ν = n. Also, m = min{π, ν} and therefore
(π, ν) = (m,n−m) or (n−m,m). Since n is odd one of
π, ν is even the other is odd and therefore one of m,n−m

is even and the other is odd. If det(A) < 0 then ν is odd
and if det(A) > 0 then ν is even. Thus, m and the sign

of det(A) determine π and ν. Note, for each m there are
two classes of isometry forms.

b) If m is the Witt index and m < n
2 then we can have

(π, ν) = (m,n−m) or (n−m,m). Thus, there are two
isometry classes.

c) If m = n
2 then (π, ν) = (m,m) and there is a unique

isometry class of forms.

7. That [ , ] is bilinear follows from the bilinearity of
〈 , 〉 and the linearity of T. We therefore have to show
that ([x,y] = [y,x]. However [x,y] = 〈x, T (y)〉 =

〈T (x),y〉 since T is self-adjoint. Since 〈 , 〉 is symmetric,
we have 〈T (x),y〉 = 〈y, T (x)〉 = [y,x] as required.

8. Fix y ∈ V and define Fy : V → R by Fy(x) =

[x,y]. Then Fy ∈ V ′ = L(V,R). Then there exists a
unique vector T (y) ∈ V such that Fy(x) = 〈x, T (y)〉.
We have defined a function T : V → V such that [x,y] =
〈x, T (y)〉. We have to show that T is linear and then a
symmetric operator.

Let y1,y2 ∈ V. Then 〈x, T (y1,+y2)〉 = [x,y1 + y2] =

[x,y1] + [x,y2] = 〈x, T (y1)〉+ 〈x, T (y2)〉 =

〈x, T (y1) + T (y2)〉.

It follows that T (y1 + y2) = T (y1) + T (y2).

Now suppose c is a scalar and y ∈ V. Then [x, cy] =

〈x, T (cy)〉. On the other hand, [x, cy] = c[x,y] =

〈x, T (y)〉 = 〈x, cT (y)〉 and consequently, T (cy) =

cT (y). Thus, T is an operator on V.

Since [ , ] is a symmetric bilinear form we have
〈x, T (y)〉 = [x,y] = [y,x] = 〈y, T (x)〉 = 〈T (x),y〉,
the latter equality since 〈 , 〉 is symmetric. This implies
that T = T ∗ and T is a symmetric operator.

9. i) implies ii). Since A is symmetric there exists an
orthonormal basis B = (v1, . . . ,vn) of Rn consisting of
eigenvectors. Assume Avi = ai. Since vtrAv > 0 for
all v ∈ Rn, in particular, vtr

i Avi = ai ‖ vi ‖2> 0 which
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8.5. Real Quadratic Forms 91

implies that ai > 0. Set ui = 1√
ai
vi and let Q be the

matrix with columns equal to the ui. Then QtrAQ = In.

ii) implies iii). Assume A is congruent to the identity
matrix. Then there is an invertible matrix P such that
P trAP = In. Then (P−1)trInP

−1 = A. Set Q = P−1.

Then A = QtrQ.

iii) implies i). Let v ∈ Rn. Then vtrAv =

(vtrQtr)(Qv) = (Qv)tr(Qv) =‖ Qv ‖2> 0 unless
Qv = 0. Since Q is invertible, Qv = 0 if and only if
v = 0.
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Chapter 9

Sesquilinear Forms and Unitary Spaces

9.1. Basic Properties of
Sesquilinear Forms

1. Let v ∈ V and c ∈ F. Then (T◦S)(cv) = T (S(cv)) =

T (σ(c)S(v)) = τ(σ(c))T (S(v)) = (τ ◦σ)(c)[T ◦S](v).
Thus, T ◦ S is a τ ◦ σ-semilinear map.

2. Let f, g ∈ Sσ(V ). We need to prove that f + g ∈
Sσ(V ). Let v1,v2,w ∈ V . Then

(f +g)(v1+v2,w) = f(v1+v2,w)+g(v1+v2,w) =

[f(v1,w) + f(v2,w)] + [g(v1,w) + g(v2,w)] =

[f(v1,w) + g(v1,w)] + [f(v2,w) + g(v2,w)] =

(f + g)(v1,w) + (f + g)(v2,w).

That (f + g)(w,v1 + v2) = (f + g)(w,v1) + (f +

g)(w,v2) is proved in exactly the same way.

Now suppose v,w ∈ V and a ∈ F. Then

(f + g)(av,w) = f(av,w) + g(av,w) =

af(v,w) + ag(v,w) = a[f(v,w) + g(v,w)] =

a[(f + g)(v,w)].

Also,

(f + g)(v, aw) = f(v, aw) + g(v, aw) =

σ(a)f(v,w) + σ(a)g(v,w) =

σ(a)[f(v,w) + g(v,w)] =

σ(a)[(f + g)(v,w)].

Thus, f + g ∈ Sσ(V ).

Now assume f ∈ Sσ(V ), c ∈ F. We must show that
cf ∈ Sσ(V ). Let v1,v2,w ∈ V . Then

(cf)(v1 + v2,w) = c[f(v1 + v2,w)] =

c[f(v1,w) + f(v2,w)] = cf(v1,w) + cf(v2,w) =

(cf)(v1,w) + (cf)(v2,w).

That (af)(w,v1 + v2) = (af)(w,v1) + (af)(w,v2) is
proved in exactly the same way.

Finally, let a ∈ F,v,w ∈ V . Then

(cf)(av,w) = cf(av,w) = caf(v,w) =

acf(v,w) = a[cf(v,w)] = a[(cf)(v,w)].

(cf)(v, aw) = cf(v, aw) = cσ(a)f(v,w) =

(σ(a)c)f(v,w) = σ(a)[cf(v,w)] =
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94 Chapter 9. Sesquilinear Forms and Unitary Spaces

σ(a)[(cf)(v,w)].

3. Assume A = Mf (B,B) =

a11 . . . a1n

... . . .
...

an1 . . . ann


 , [u]B =



b1
...
bn


, and [v]B =



c1
...
cn


.

Then

f(u,v) = f(

n∑
i=1

bivi,

n∑
j=1

cjvj) =

n∑
i=1

n∑
j=1

biaijσ(cj) =

[u]trB Aσ([v]B).

4. Let B = (v1, . . . ,vn) be a basis. Denote by gi the σ-
semilinear map from V to F given by gi(w) = f(vi,w).
We claim that (g1, . . . , gn) is linearly independent. For
suppose

∑n
i=1 aigi = 0V→F. Then for all w ∈ V ,

n∑
i=1

aigi(w) =
∑
i=1

aif(vi,w) = 0

Consequently, f(
∑n

i=1 aivi,w) = 0. Thus,∑m
i=1 aivi ∈ RadL(f) = {0V }. Since (v1, . . . ,vn) is

linearly independent it follows that a1 = · · · = an = 0.
Thus, (g1, . . . , gn) is linearly independent as claimed.
Since the dimension of the space of σ-semilinear
maps from V to F is equal to dim(V ) = n it follows
that (g1, . . . , gn) is a basis for this space. Since F

is a σ-semilinear map from V to F there are unique
scalars b1, . . . , bn such that F =

∑n
i=1 bigi. Set

v = b1v1 + · · · + bnvn. Then F (w) = f(v,w) for all
w ∈ V .

5. i. Assume f is Hermitian and 1 ≤ i, j ≤ n. Then
aji = f(vj ,vi) = σ(f(vi,vj)) = σ(aij) = aij . Thus,
Atr = A. Conversely, if Atr = A then f(vj ,vi) =

σ(f(vi,vj)). Suppose v = b1v1 + · · · + bnvn and w =

c1v1 + · · ·+ cnvn. Then

f(w,v) = [w]trB Aσ([v]B).

Since f(w,v) is a scalar we have

[w]trB Aσ([v]B) = σ([v]trB Atr[w]B =

σ([v]trB σ(Atr)σ([w]B) = σ(f(v,w)).

ii. This is proved exactly as i.

6. Let gi be the σ-semilinear map such that gi(vi) =

1 and gi(vj) = 0 for j �= i. By Lemma (9.5) there is
vector v′

i such that f(v′
i,w) = gi(w). Thus, f(v′

i,vi) =

gi(vi) = 1 and f(v′
i,vj) = gi(vj) = 0.

7. Assume σ2 = IF. Then f is Hermitian, hence reflexive.
To see this, let v =

∑n
i=1 aivi and w =

∑n
i=1 biv

′
i. Then

f(v,w) =
n∑

i=1

aiσ(bi).

On the other hand,

f(w,v) =
∑
i=1

biσ(ai).

If σ2 = IF then f(w,v) = σ(f(v,w)) so f is Hermitian
and reflexive.

Assume dim(V ) ≥ 2 and σ2 �= IF. Let a ∈ F, σ2(a) �=
a. Then

f(σ(a)v1 + v2,v1 − av2) = σ(a)− σ(a) = 0.

On the other hand,

fv1 − av2, σ(a)v1 + v2) = σ2(a)− a �= 0.

8. We can view F as a two dimensional vector space
over E. The map trF/W is a linear map. Therefore ei-
ther trF/E is the zero map or it is surjective. Suppose the
characteristic of F is not two. Then the map a → −a is
not an automorphism of F and there exists an a such that
a+σ(a) �= 0. If follows that in this case the map is surjec-
tive. Suppose the characteristic is two. Since σ �= IF there
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9.2. Unitary Space 95

is an a such that a �= σ(a) which implies that a+σ(a) �= 0

and once again the map is surjective.

9.2. Unitary Space

1. Suppose (v1, . . . ,vn) is linearly dependent. Then
for some k,vk is a linear combination of (v1, . . . ,vk−1).
Say vk = a1v1 + · · · + ak−1vk−1. Then f(vk,vk) =

f(vk, a1v1 + · · · + ak−1vk−1) = a1f(vk,v1) + · · · +
ak−1f(vk,vk−1) = 0 which contradicts the assumption
that f(vi,vi) �= 0 for 1 ≤ i ≤ n.

2. If T is an isometry then f(T (vi), T (vj)) = f(wi,wj)

for all i and j. Conversely, assume that f(wi,wj) =

f(vi,vj) for all i and j. Assume v =
∑n

i=1 aivmw =∑
i=1 bivi. Then f(v,w) =

f(
∑
i=1n

aivi,

n∑
i=1

bivi) =

n∑
i=1

aibif(vi,vi).

On the other hand, T (v) =
∑n

i=1 aiT (vi) =
∑n

i=1 aiwi

and, similarly, T (w) =
∑n

i=1 biwi. Then

f(T (v), T (w)) = f(
n∑

i=1

aiwi,

n∑
i=1

biwi) =

n∑
i=1

aibif(wi,wj) = f(v,w).

3. Since f is non-degenerate there exists a vector u such
that f(v,u) �= 0. Now the result follows from Lemma
(9.14).

4. Let x = av1 + bw1,y = cv1 + dw1. Then
f(x,y) = aσ(d) + bσ(c). By the definition of T we
have T (x) = av2 + bw2, T (y) = cv2 + dw2. We then
have f(T (x), T (y)) = f(av2 + bw2, cv2 + dw2) =

aσ(d) + bσ(c).

5. Suppose to the contrary that dim(U1) �=
dim(U2). Then without loss of generality we can assume

dim(U1) = l < m = dim(U2). Let (v1, . . . ,vl) be a
basis for U2 and (w1, . . . ,wm) a basis for U2. Let τ be
the linear transformation from Span(w1, . . . ,wl) → U2

such that τ(wi) = vi. Then τ is an isometry. By Witt’s
theorem there is an isometry T of V such that T restricted
to Span(w1, . . . ,wl) is τ . Set U ′

2 = T (U2). Then U ′
2 is

a totally singular subspace of V and U ′
2 properly contains

U1, contradicting the assumption that U1 is a maximal to-
tally singular subspace.

6. By Witt’s theorem there is an isometry T of V such that
T (U1) = U2. Let x ∈ U2 and y ∈ T (U1)

⊥. We claim
that f(x,y) = 0 from which it will follow that T (U⊥

1 ) ⊂
U⊥
2 . Since U2 = T (U1) there is a vector u ∈ U1 such that

x = T (u). Since y ∈ T (U⊥
1 ) there is a v ∈ U⊥

1 such that
y = T (v). Now f(x,y) = f(T (u), T (v)) = T (u,v) =

0. Now dim(U⊥
1 ) = dim(V ) − dim(U1) = dim(V ) −

dim(U2) = U⊥
2 . Since dim(T (U⊥

1 )) = dim(U⊥
1 ) it now

follows that T (U⊥
1 ) = U2.

7. Let x be an anisotropic vector and let y ∈ x⊥. Since
N is surjective, we can assume that f(x,x) = 1 and
f(y,y) = −1. Then v = x− y is isotropic.

8. We prove this by induction on n ≥ 2 (there is noth-
ing to prove for n = 1). The base case is covered by
Exercise 7. Assume that n > 2 and that the result has
been proved for all non-degenerate unitary spaces (W, g)

where dim(W ) < n. and that dim(V ) = n. By Exercise
7 the space is isotropic. By Exercise 3 there exists a hy-
perbolic pair, (x,y). U = Span(x,y) is non-degenerate
and therefore U⊥ is a non-degenerate subspace of dimen-
sion n − 2. By the inductive hypothesis there exists an
totally isotropic subspace M,dim(M) = �n−2

2 �. Then
M ′ = M + Span(x) is a totally isotropic subspace and
dim(M ′) = �n−2

2 �+ 1 = �n
2 �.

9. Let I be the set of all isotropic vectors and set U =

Span(I). If we can show that Span(I) = V then I con-
tains a basis of V and are done. Fix an isotropic vec-
tor x and let y ∈ V be arbitrary. If y is isotropic then
y ∈ Span(I) and there is nothing to prove. So assume y

is anisotropic. If f(x,y) �= 0 then Span(x,y) is non-
degenerate and by Corollary (9.3) there is an isotropic
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96 Chapter 9. Sesquilinear Forms and Unitary Spaces

vector z ∈ Span(x,y) such that f(x, z) = 1. Then
y ∈ Span(x,y) = Span(x, z) ⊂ Span(I). We may
therefore assume that x ⊥ y. Now y⊥ is non-degenerate
and contains x so there is an isotropic vector u ∈ y⊥ such
that f(x,u) = 1 and then U = Span(x,y,u) is a non-
degenerate three dimensional subspace. Let W be a two
dimensional subspace of U containing x such that W �=
Span(x,y), Span(x,u). Then W is non-degenerate and
by Corollary (9.3) there is an isotropic vector z ∈ W

such that f(x, z) = 1 and W = Span(x, z). Then
y ∈ U = Span(x,u,w) ⊂ Span(I).

10. The proof is by induction on n = dim(V ). If
dim(V ) = 1 then any non-zero vector is an orthogonal
basis. So assume n > 1 and the result is true for all non-
degenerate spaces of dimension n−1. Since (V, f) is non-
degenerate there exists a vector v such that f(v,v) �= 0.
Set U = v⊥, a non-degenerate subspace of dimension
n − 1. By the inductive hypothesis there exists an or-
thogonal basis (v1, . . . ,vn−1) for U . Set vn = v. Then
(v1, . . . ,vn) is an orthogonal basis for V .

K23692_SM_Cover.indd   104 02/06/15   3:12 pm



Chapter 10

Tensor Products

10.1. Introduction to Tensor
Products

1. Assume V1, V2 are finite dimensional and suppose
B1 = (v1, . . . ,vm),B2 = (w1, . . . ,wn). If f̂ exists then
we must have

f̂(
m∑
i=1

aivi,

n∑
j=1

bjwj) =

m∑
i=1

n∑
j=1

aibjf(vi,wj).

In fact, defining f̂ in this way gives a bilinear function
with f̂ restricted to B1×B2 equal to f. On the other hand,
if V1 or V2 is not finite dimensional, then for any finite
subset B′

1 of B1 and B′
2 of B2 we can use this to define

a bilinear map on Span(B′
1) × Span(B′

2). One can then
use Zorn’s lemma to show that these can be extended to
all of V1 × V2. We omit the details.

’
2. Define a map θ : V1×V2 to V2⊗V1 by θ(x,y) = y⊗x.

This map is bilinear. Since V1⊗V2 is universal for V1×V2

there exists a linear transformation T : V1⊗V2 → V2⊗V1

such that T (x ⊗ y) = y ⊗ x. In a similar way we get a
linear transformation S : V2 ⊗ V1 → V1 ⊗ V2 such that
S(y⊗x) = x⊗y. Then ST = IV1⊗V2 and TS = IV2⊗V1 .

3. Let x,x1,x2 ∈ V1,y,y1,y2 ∈ V2 and c ∈ F. Since
f1 ∈ L(V1,F) we have

f(x1 + x2,y) = f1(x1 + x2)f2(y) =

[f1(x1) + f1(x2)]f2(y)

By the distributive property in F we can conclude that

[f1(x1)+f1(x2)]f2(y) = f1(x1)f2(y)+f1(x2)f2(y) =

f(x1,y) + f(x2,y)

In exactly the same way we can prove that f(x,y1 +

y2) = f(x,y1) + f(x,y2).

Now to the scalar property: f(cx,y) = f1(cx)f2(y) =

[cf1(x)f2(y)] = cf(x,y). Similarly, f(x, cy) =

f1(x)f2(cy) = f1(x)[cf2(y)] = [f1(x)c]f2(y) =

[cf1(x)]f2(y) = c[f1(x)f2(y) = cf(x,y).

4. Let (v1,v2) be linearly independent in V and
(w1,w2) be linearly independent in W and set x =

v1 ⊗ w1 + v2 ⊗ w2. Then x is indecomposable. Sup-
pose to the contrary that there are vectors v ∈ V and
w ∈ W such that x = v ⊗ w. We can assume that
(v1,v2) and (w1,w2) can each be extended to an in-
dependent sequence (v1, . . . ,vm, (w1, . . . ,wn), respec-
tively, such that v ∈ Span(v1, . . . ,vm) and w ∈
Span(w1, . . . ,wn). Write v = a1v1+ · · ·+amvm,w =

b1w1 + · · ·+ bnwn. Then

v ⊗w =
∑
i,j

aibjvi ⊗wj .

Since {vi ⊗ wj |1 ≤ i ≤ m, 1 ≤ j ≤ n} is linearly
independent we must have a1b2 = 0 = a2b1 and a1b1 =

1 = a2b2 which gives a contradiction.
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98 Chapter 10. Tensor Products

5. Set W ′ = Span(w1, . . . ,wn), a finite dimen-
sional subspace of W. Let (z1, . . . ,zs) be a basis for
W ′. We can express each wj as a linear combination of
(z1, . . . ,zs) : wj =

∑s
i=1 aijzi. Now

∑n
j=1 xj ⊗wj =∑n

j=1

∑s
i=1 ajixj ⊗ zi. However, {xj ⊗ zi|1 ≤ j ≤

n, 1 ≤ i ≤ s} is linearly indendent and therefore each
aji = 0 whence wi = 0W for all i.

6. Before proceeding we claim that for any basis
(x1, . . . ,xs) of V and any z ∈ Z there are vectors
yi ∈ W such that z = f(x1,y1) + · · · + f(xs,ys).

Thus, assume that z = f(v1,w1) + · · · + f(vm,wm).

We can express vj in terms of the basis (x1, . . . ,xs) :

vj =
∑s

i=1 aijxi. Now set yi =
∑m

j=1 aijwj . Then by
the bilinearity of f it follows that

z = f(v1,w1) + · · ·+ f(vm,wm) =

f(x1,y1) + · · ·+ f(xs,ys).

Now by hypothesis b) it follows for z ∈ Z there are
unique yi ∈ W such that z = f(x1,y1)+· · ·+f(xs,ys).

Now assume that g : V × W → X is a bilinear form.
We need to show that there exists a unique linear map ĝ :

Z → X such that ĝ◦f = g. Clearly the only possible way
to define g is as follows: suppose z =

∑s
i=1 f(xi,yi).

Then ĝ(z) =
∑s

i=1 g(xi,yi). By the uniqueness of ex-
pression for z, ĝ is a well-defined function. However, we
need to demonstrate that it is linear. Thus, let z, z′ ∈ Z.
We need to prove that ĝ(z + z′) = ĝ(z) + ĝ(z′).

Assume that z =
∑s

i=1 f(xi,yi) and z′ =∑s
i=1 f(xi,y

′
i). Since f is bilinear we have z + z′ =∑s

i=1 f(xi,yi + y′
i). Then

ĝ(z + z′) =

s∑
i=1

g(xi,yi + y′
i)

By the bilinearity of g we have

s∑
i=1

g(xi,yi + y′
i) =

s∑
i=1

(g(xi,yi) + g(xi,y
′
i) =

s∑
i=1

g(xi,yi) +
s∑

i=1

g(xi,y
′
i) =

ĝ(z) + ĝ(z′).

Next assume that z ∈ Z and c ∈ F. If z =∑s
i=1 f(xi,yi) then by the bilinearity of f we have cz =∑s
i=1 f(xi, cyi) so that

ĝ(cz) =
s∑

i=1

g(xi, cyi) =

s∑
i=1

cg(xi,yi) =

c

s∑
i=1

g(xi,yi) = cĝ(z).

7. By the universal property of the tensor product we
know for all f ∈ B(V,W ;Z) there exists a linear map
f̂ : V ⊗W → Z. Let θ denote the map f → f̂ so that θ
is a map from B(V,W ;Z) to L(V ⊗W,Z). We need to
prove that θ is linear and bijective.

We first show that θ is additive: Assume f, g ∈
B(V,W ;Z). Then f̂ , ĝ are the uniique linear maps from
V ⊗ W to Z such that f̂(v ⊗ w) = f(v,w) and
ĝ(v ⊗ w) = g(v,w). Now f̂ + ĝ is a linear map from
V ⊗W to Z. Computing (f̂ + ĝ)(v ⊗w) we get

f̂(v⊗w)+ĝ(v⊗w) = f(v,w)+g(v,w) = (f+g)(v,w).

By uniqueness, f̂ + g = f̂ + ĝ.

We next show homogeneity holds: if c is a scalar then
ĉf = cf̂ .

ĉf(v ⊗w) = (cf)(v,w) = cf(v,w) = cf̂(v ⊗w)

as required.

It remains to show that θ is an isomorphism. Injectivity is
easy: If f, g ∈ B(V,W ;Z) are distinct then there exists
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v ∈ V,w ∈ W such that f(v,w) �= g(v,w). Then f̂(v⊗
w) = f(v,w) �= g(v,w) = ĝ(v ⊗w).

It remains to show surjectivity. Assume T ∈ L(V ⊗
W,Z). Define t : V ×W → Z by t(v,w) = T (v ⊗w).

Since T is linear and the tensor product is bilinear it fol-
lows that t is bilinear. Thus, t ∈ B(V,W ;Z). Clearly
t̂ = T and so θ is surjective.

8. The map µ : F × V → V given by µ(c,v) = cv is
bilinear. We therefore have a linear transformation from
F ⊗ V to V such that c ⊗ v = cv. Denote this map by
T . Define S : V → F ⊗ V by S(v) = 1 ⊗ v. This
map is linear. Consider the composition ST (c ⊗ v) =

S(cv) = 1⊗ (cv) = c⊗v so that ST = IF⊗V . Similarly,
TS(v) = T (1⊗ v) = v and TS = IV .

9. To avoid confusion we denote the tensor product of X
and Y by X ⊗′ Y (as well as products of elements in this
space). Define θ : X ×Y → V ⊗W by θ(x,y) = x⊗y

(since this is in V ⊗W there is no prime). By the universal
property for the tensor product there exists a linear map
θ̂ : X ⊗′ Y → V ⊗W such that θ̂(x⊗′ y) = θ(x,y) =

x⊗y (there is no ′ in the latter expression since this is the
tensor product of the two elements in V ⊗ W ). Since Z

is the subspace of V ⊗W generated by all elements x⊗
y, Range(θ̂) = Z. We need to prove that θ̂ is injective.
Suppose θ̂(u) = 0V⊗W where u ∈ X ⊗′ Y. Then there
exists a linearly independent sequence (x1, . . . ,xm) in
X and a linearly independent sequence (y1, . . . ,yn) in Y

and scalars aij such that u =
∑

ij aijxi ⊗′ y′
j .

We then have θ(
∑

i,j aijxi ⊗′ yj) = 0V⊗W . However,
θ(
∑

i,j aijxi ⊗′ yj) =
∑

i,j aijxi ⊗ yj (now this tensor
product is in V ⊗W ). The vectors {xi⊗yj ∈ V ⊗W |1 ≤
i ≤ m, 1 ≤ j ≤ n} are linearly independent and therefore
aij = 0 and u = 0X⊗′Y .

10. Let (y1, . . . ,yk) be a basis of Y1 ∩ Y2.

Let (y1, . . . ,yk,w1, . . . ,wl) be a basis for Y1 and
(y1, . . . ,yk, z1, . . . ,zm) be a basis for Y2. Suppose u ∈
(V ⊗ Y1) ∩ (V ⊗ Y2). Since u ∈ V ⊗ Y1 there are
unique vectors u1, . . . ,uk,v1, . . . ,vl ∈ V such that
u = u1⊗y1+ · · ·+uk⊗yk+v1⊗w1+ · · ·+vl⊗wl.

On the other hand since u ∈ V ⊗ Y2 there are unique
vectors u′

1, . . . ,u
′
k,x1, . . . ,xm such that u = u′

1⊗y1+

· · ·+u′
k ⊗yk +x1⊗z1+ · · ·+xm⊗zm. However, this

implies that

(u1 − u′
1)⊗ y1 + · · ·+ (uk − u′

k)⊗ yk+

v1⊗w1+· · ·+vl⊗wl−x1⊗z1−· · ·−xm⊗zm = 0V⊗W .

Since (y1, . . . ,yk,w1, . . . ,wl, z1, . . . ,zm) is linearly
independent by Exercise 5 we have u1 − u′

1 = · · · =

uk − u′
k = v1 = · · · = vl = x1 = · · · = xm = 0V .

Thus, u ∈ V ⊗ (Y1 ∩ Y2).

10.2. Properties of Tensor
Products

1. If π fixes one of 1, 2 or 3 this follows from the fact that
V ⊗W is isomorphic to W ⊗ V by Exercise 1 of Section
(10.1). We illustrate the proof for π = (123). Let f : V1×
V2×V3 → V2⊗V3⊗V1 given by f(x,y, z) = y⊗z⊗x.

This is a 3-linear map. By the universal property of the
tensor product we have a linear map f̂ : V1 ⊗ V2 ⊗ V3 →
V2 ⊗ V3 ⊗ V1 such that f̂(x⊗ y ⊗ z) = y ⊗ z ⊗ z.

Likewise can define a trilinear map g : V2 × V3 × V1 →
V1 ⊗ V2 ⊗ V3 given by g(y, z,x) = x⊗ y ⊗ z. There is
then a linear map ĝ : V2⊗V3⊗V1 such that ĝ(y⊗z⊗x) =

x⊗ y ⊗ z.

ĝf̂ = IV1⊗V2⊗V3
and f̂ ĝ = IV2⊗V3⊗V1

.

2. If vi ∈ Vi then S1 ⊗ · · · ⊗ Sm)(v1 ⊗ · · · ⊗ vm) =

S1(v1)⊗· · ·⊗Sm(vm) ∈ R1⊗· · ·⊗Rm. V1⊗· · ·⊗Vm

is generated by all vectors of the form v1 ⊗ · · · ⊗ vm it
follows that Range(S1 ⊗ · · · ⊗ Sm) ⊂ R1 ⊗ · · · ⊗ Rm.

We need to prove the reverse inclusion.

Suppose ri ∈ Ri = Range(Si). Let vi ∈ Vi such that
S(vi) = ri. Then (S1 ⊗ · · · ⊗ Sm)(v1 ⊗ · · · ⊗ vm) =
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S(v1)⊗ · · ·⊗S(vm) = r1⊗ · · ·⊗ rm and consequently,
R1 ⊗ · · · ⊗Rm ⊂ R.

3. We do a proof by induction on m ≥ 2. For
the base case let dim(Vi) = ni and dim(Ki) = ki
for i = 1, 2. Let (v1, . . . ,vk1) be a basis for K1

and extend to a basis (v1, . . . ,vn1
) for V1. Similarly,

let (u1, . . . ,uk2
) be a basis for K2 and extend to

a basis (u1, . . . ,un2) for V2. Note that the sequence
(S1(vk1+1), . . . , S1(vn1)) in W1 is linearly independent
as is the sequence (S2(uk2+1), . . . , S2(un2

)) in W2. As a
consequence the set of vectors {S1(vi)⊗S2(uj)|k1+1 ≤
i ≤ n1, k2 + 1 ≤ j ≤ n2} is linearly independent.

Assume now that x =
∑

i,j aijvi ⊗ uj ∈ K. Applying
S1 ⊗ S2 we get

(S1 ⊗ S2)(
∑
i,j

aijvi ⊗ vj =

∑
i,j

aijS1(vi)⊗ S(vj) =

n1∑
i=k1+1

n2∑
j=k2+1

aijS(ui)⊗ S(vj) = 0W1⊗W2 .

Since {S1(vi)⊗ S2(uj)|k1 + 1 ≤ i ≤ n1, k2 + 1 ≤ j ≤
n2} is linearly independent for k1+1 ≤ i ≤ n1, k2+1 ≤
j ≤ n2, aij = 0. This implies that u ∈ K1 ⊗ V2 + V1 ⊗
K2 = X1 +X2.

Assume the result is true for tensor product of m spaces
and that we have Si : Vi → Wi for 1 ≤ i ≤ m. Set
V ′
2 = V2 ⊗ · · · ⊗Vm+1 and S′

2 = S2 ⊗ · · · ⊗Sm+1. Then
V1⊗· · ·⊗Vm+1 is equal to V1⊗V ′

2 and S1⊗· · ·⊗Sm+1 =

S1 ⊗ S′
2. Set K ′

2 = Ker(S′
2). Also set Y2 = K2 ⊗ V3 ⊗

· · ·⊗Vm+1, Yi = V2⊗· · ·⊗Vi−1⊗Ki⊗Vi+1⊗· · ·⊗Vm+1.

By the inductive hypothesis K ′
2 = Y2+ · · ·+Ym+1. Also,

by the base case, K = K1 ⊗ V ′
2 + V1 ⊗ K ′

2. However,
V1⊗K ′

2 = V1⊗ (Y2+ · · ·+Ym+1) = X2+ · · ·+Xm+1

while K1 ⊗ V ′
2 = X1. This completes the proof.

4. Let S : Fl → Fk be the transformation such that
S(v) = Av and T : Fn → Fm be the transforma-
tion such that T (w) = Bw. Then A ⊗ B is the matrix

of the transformation S ⊗ T : Fl ⊗ Fn → Fk ⊗ Fm

with respect to the bases obtained by taking tensor prod-
ucts of the standard basis vectors in lexicographical or-
der. Then rank(A ⊗ B) = dim(Range(S ⊗ T )).

On the other hand, rank(A) = dim(Range(S)) and
rank(B) = dim(Range(T )). By Exercise 2 the range
of S⊗T is Range(S)⊗Range(T ) which has dimension
dim(Range(S))× dim(Range(T )).

5. Let dim(V ) = m, dim(W ) = n. Assume neither S
nor T is nilpotent. Let f(x) = µS(x) and g(x) = µT (x).

Then f(x) does not divide xm and g(x) does not divide
xn. Let p(x) �= x be an irreducible factor of f(x) and
q(x) �= x be an irreducible factor of g(x). Let x ∈ V such
that µS,x(x) = f(x) and y ∈ W such that µT,y(x) =

q(x). Set X = 〈S,x〉 and Y = 〈T,y〉. Then X ⊗ Y is
invariant under S ⊗ IW and IV ⊗ T and therefore under
S⊗T = (S⊗ IW )(IV ⊗T ). Set Z = X ⊗Y and denote
by S ⊗ T the restriction of S ⊗ T to Z. It follows from
Exercise 2 that S ⊗ T is surjective, therefore injective, on
Z. In particular, Ker(S ⊗ T ) is trivial. However, if S⊗T

is nilpotent then for any invariant subspace U of V ⊗W

the kernel of the restriction of S ⊗ T to U must be non-
trivial. Thus, S ⊗ T is not nilpotent.

6. Let vi ∈ V be an eigenvector of S with eigenvalue
αi and wj an eigenvector of T with eigenvalue βj . Then
vi⊗wj is an eigenvector of S⊗T with eigenvalue αiβj .

Consequently, S⊗T is diagonalizable. On the other hand,
since the eigenvalues αiβj are all distinct, the minimum
polynomial of S ⊗ T is

m∏
i=1

n∏
j=1

(x− αiβj)

has degree mn and therefore S ⊗ T is cyclic.

7. For any cyclic diagonalizable operator S : V → V the
operator S ⊗S : V ⊗ V → V ⊗ V will not be cyclic. For
example, let S : R2 → R2 be given by multiplication by

A =

(
1 0

0 2

)
. Then
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10.2. Properties of Tensor Products 101

A⊗A =




1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 4




So, the eigenvalue 2 occurs with algebraic multiplicity 2
and the operator is not cyclic.

8. Let v ∈ V such that µS,v(x) = (x − α)k and let
w ∈ W such that µT,w(x) = (x − β)l. It suffices to
prove that S⊗T restricted to 〈S,v〉⊗〈T,w〉 has minimum
polynomial dividing (x− αβ)kl.

Set v1 = v and for i < k set vi+1 = (S − αIV )vi. Simi-
larly, set w1 = w and for j < l,wj+1 = (T − βIW )wj .

(v1, . . . ,vk) is a basis for 〈S,v〉 and (w1, . . . ,wl) is a
basis for 〈T,w〉. Let S be the restriction of S to 〈S,v〉
and T the restriction of T to 〈T,w〉. The matrix of S with
respect to (v1, . . . ,vk) is the k × k matrix

A =




α 0 0 . . . 0

1 α 0 . . . 0
...

...
... . . .

...
0 0 0 . . . α




The matrix of T with respect to (w1, . . . ,wl) is

B =




β 0 0 . . . 0

1 β 0 . . . 0
...

...
... . . .

...
0 0 0 . . . β




The matrix A ⊗ B is a lower triangular kl × kl with αβ

on the diagonal. This implies the result.

9. Let c, d ∈ K and v̂ =
∑n

i=1 ai ⊗F vi. Then

(c+ d)v̂ = (c+ d)

n∑
i=1

ai ⊗F vi =

n∑
i=1

(c+ d)ai ⊗F vi =

n∑
i=1

(cai + dai)⊗F vi =

n∑
i=1

cai ⊗F vi +

n∑
i=1

dai ⊗F vi =

c
n∑

i=1

ai ⊗F vi + d

n∑
i=1

ai ⊗F vi =

cv̂ + dv̂.

We need also to compute (cd)v̂:

(cd)v̂ = (cd)
n∑

i=1

ai ⊗F vi =

n∑
i=1

(cd)ai ⊗F vi =

n∑
i=1

c(dai)⊗F vi = c
n∑

i=1

dai ⊗F vi =

c[d
n∑

i=1

ai ⊗F vi]

10. That B̂ is linearly independent follows from Exercise
5 of Section (10.1). We show that B̂ spans VK. Since every
element of VK is a sum of elements of the form c ⊗F w

for w ∈ V it suffices to prove that this element belong
to Span(B̂). Since B is a basis for V there exist scalars
ai ∈ F such that w = a1v1 + · · ·+ anvn. Then

c⊗F w = c⊗F (a1v1 + · · ·+ anvn) =

(ca1)⊗F v1 + . . . (can)⊗F vn ∈ Span(B̂).

11. Let dim(V ) = m, dim(W ) = n. Then by
Exercise 11, dimK(VK) = m, dimK(WK) = n.
Then dim(L(V,W )) = mn = dimK(L(VK,WK) =

dimK(L(V,W )K. Thus, L(VK,WK) and L(V,W )K are
isomorphic as spaces over K.

12. Let B1 = (u1, . . . ,um) be a basis for V1 and
B2 = (w1, . . . ,wn) be a basis for V2. Let B′ be the
basis of V1 ⊗ V2 consisting of the set {ui ⊗ wj |1 ≤
i ≤ m, 1 ≤ j ≤ n} ordered lexicographically. Let
A = MS1(B1,B1) and B = MS2(B2,B2) so that
MS1⊗S2

(B′,B′) = A⊗B. Assume the (k, l)−entry of A
is aij and the (k, l)−entry of B is bkl. Then the diagonal
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102 Chapter 10. Tensor Products

entries of A⊗B are aiibjj where 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The sum is then (a11 + · · · + amm)(b11 + · · · + bnn) =

Trace(A)Trace(B).

13. Suppose E is an elimination matrix and is upper tri-
angular. Then E ⊗ In is also upper triangular with 1’s
on the diagaonal and therefore det(E ⊗ In) = 1 = 1n.

Similarly, if E is lower triangular then det(E ⊗ In) = 1.

Suppose E is an exchange matrix, specifically obtained
by exchanging the i and j rows of the identity matrix Im.

Then E ⊗ In can be obtained from the identity matrix by
exchanging rows n(i− 1) + k with row n(j − 1) + k for
1 ≤ k ≤ n. Therefore det(E⊗ In) = (−1)n = det(E)n.

Finally, assume that E is a scaling matrix obtained by
multiplying the i row of Im by c. Then E ⊗ In is ob-
tained from the mn−identity matrix by multiplying rows
n(i−1)+k by c for 1 ≤ k ≤ n and is therefore a diagonal
matrix with n diagonal entries equal to c and the remain-
ing equal to 1. Then det(E ⊗ In) = cn = det(E)n.

14. If either S1 or S2 is singular then so is S1 ⊗ S2 and
then the result clearly holds. Therefore we may assume
that Si is invertible for i = 1, 2.

Let B1 = (u1, . . . ,um) be a basis for V1 and B2 =

(w1, . . . ,wn) be a basis for V2. Let B′ be the basis of
V1 ⊗ V2 consisting of the set {ui ⊗wj |1 ≤ i ≤ m, 1 ≤
j ≤ n} ordered lexicographically. Let A = MS1(B1,B1)

and B = MS2
(B2,B2) so that MS1⊗S2

(B′,B′) = A ⊗
B. Then det(S1 ⊗ S2) = det(A⊗B).

Let E1, . . . , Ek be m ×m elementary matrices such that
S1 = E1E2 . . . Ek and let F1, . . . , Fl be n×n elementary
matrices such that S2 = F1F2 . . . Fl. Then A ⊗ B =

(E1 ⊗ In) . . . (Ek ⊗ In)(Im ⊗ F1) . . . (Im ⊗ Fl). Since
the determinant is multiplicative we have

det(A⊗B) =

det(E1⊗In) . . . det(Ek⊗In)det(Im⊗F1) . . . det(Im⊗Fl).

By Exercise 14, det(Ei ⊗ In) = det(Ei)
n and det(Im ⊗

Fj) = det(Fj)
m.

Then

det(A⊗B) =

det(E1)
n . . . det(Ek)

ndet(F1)
m . . . det(Fl)

m =

[det(E1) . . . det(Ek)]
n[det(F1) . . . det(Fl)]

m =

det(A)ndet(B)m.

10.3. The Tensor Algebra

1. Suppose f1, f2 ∈ ⊕i∈IVi. Set I1 = spt(f1), I2 =

spt(f2). Let J = I1 ∩ I2, J
′ = {j ∈ I|f2(j) = −f1(j)}

and J∗ = J \ J ′. Further set I ′1 = I1 \ J∗, I ′2 = I2 \ J∗.

Then spt(f1+f2) = I1∪ I2 \J ′ = I ′1∪ I ′2∪J∗. We now
compute G(f1 + f2) :

G(f1 + f2) =
∑

i∈spt(f1+f2)

gi([f1 + f2](i)) =

∑
i∈I′

1∪I′
2∪J∗

gi([f1 + f2](i)) =

∑
i∈I′

1

gi([f1 + f2](i)) +
∑
i∈I′

2

gi([f1 + f2](i))+

∑
i∈J∗

gi([f1 + f2](i)) =

∑
i∈I′

1

gi(f1(i) + f2(i)) +
∑
i=I′

2

gi(f1(i) + f2(i))+

∑
i∈J∗

gi(f1(i) + f2(i)) =

∑
i∈I′

1

gi(f1(i)) +
∑
i∈I′

2

gi(f2(i)) +
∑
i∈J∗

gi(f1(i) + f2(i)) =

∑
i∈I′

1

gi(f1(i)) +
∑
i∈I′

2

gi(f2(i))+

∑
i∈J∗

[gi(f1(i)) + gi(f2(i)) (10.1)
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10.3. The Tensor Algebra 103

For i ∈ J ′ we have f1(i) + f2(i) = 0 and therefore

∑
i∈J ′

gi(f1(i) + f2(i)) = 0W (10.2)

Adding (10.2) to (10.1) we obtain

∑
i∈I′

1

gi(f1(i)) +
∑
i∈I′

2

gi(f2(i))+

∑
i∈J∗

[gi(f1(i)) + gi(f2(i)) +
∑
i∈J ′

gi(f1(i) + f2(i)) =

∑
i∈I′

1

gi(f1(i)) +
∑
i∈I′

2

gi(f2(i))+

∑
i∈J∗

[gi(f1(i)) + gi(f2(i))+

∑
i∈J ′

gi(f1(i)) +
∑
i∈J ′

gi(f2(i)) (10.3)

Rearranging and combining the terms in (10.3) we get

∑
i∈I′

1∪J∗∪J ′

gi(f1(i)) +
∑

i∈I′
2∪J∗∪J′

gi(f2(i)) (10.4)

Since spt(f1) = I ′1 ∪J∗ ∪J ′ and spt(f2) = I ′2 ∪J∗ ∪J ′

we get (10.4) is equal to

∑
i∈spt(f1)

gi(f1(i)) +
∑

i∈spt(f2)

gi(f2(i)) = G(f1) +G(f2)

Now suppose f ∈ ⊕i∈IVi and 0 �= c ∈ F is a scalar. Then
spt(cf) = spt(f). Now

G(cf) =
∑

i∈spt(cf)

gi([cf ](i)) =
∑

i∈spt(f)

gi([cf ](i)) =

∑
i∈spt(f)

gi(cf(i)) =
∑

i∈spt(f)

cgi(f(i)) =

c
∑

i∈spt(f)

gi(f(i)) = cG(f).

2. Since S : V → W is surjective, each S ⊗ · · · ⊗ S :

Tk(V ) → Tk(W ) is surjective by part i) of Lemma (10.2).
It then follows by Lemma (10.3) that T (S) is surjective.

3. Since S : V → W is injective, each S ⊗ · · · ⊗ S :

Tk(V ) → Tk(W ) is injective by part ii) of Lemma (10.2).
It then follows by Lemma (10.3) that T (S) is injective.

4. This follows immediately from part iv. of Lemma
(10.2).

5. The eigenvalues are: 8, 27, 125 (with multiplicity 1)
12, 20, 18, 50, 45, 75 (with multiplicity 3) and 30 (with
multiplicity 6).

6. Let S(v1) = 2v1, S(v2) = 3v2. Then v1⊗v2,v2⊗v1

are both eigenvectors of T2(S) with eigenvalue 6. Thus,
T2(S) is not cyclic.

7. This is false unless RS = SR = 0V→V . Even taking
R = S = IV gives a counterexample. In that case R +

S = 2IV and T (R) + T (S) = 2IT (V ) and every vector
in T (V ) is an eigenvector with eigenvalue 2 for 2IT (V ).

On the other hand, vectors in T2(V ) are eigenvectors of
T2(2IV ) with eigenvalue 4.

8. This is false. For example, let V have dimension 3
with basis (v1,v2,v3). Set X = Span(v1,v2) and Y =

Span(x3) and S = Proj(X,Y ). Then Ker(S) = Y. Now
K2 = Ker(T2(S)) = V ⊗ Y + Y ⊗ V has dimension 6
and therefore T2(V )/K2 has dimension 3. On the other
hand, dim(V/Y ) = 2 and T2(V/Y ) = 4.

9. This is an immediate consequence of the definition of
the tensor product.

10. Assume Sl = 0V→V . We claim that Tk(S)kl−k+1 =

0Tk(V )→Tk(V ). To see this note that Tk(S) = (S ⊗ IV ⊗
· · · ⊗ IV )(IV ⊗ S ⊗ · · · ⊗ IV ) . . . (IV ⊗ IV ⊗ · · · ⊗ S)

where in each case there is tensor product of k maps, one
is S and all the others are IV . These maps commute and
therefore Tk(S)kl−k+1 =

∑
Sj1 ⊗ · · · ⊗ Sjk (10.5)

where the sum is over all non-negative sequences
(j1, . . . , jk) such that j1 + · · · + jk = kl − k + 1. By
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104 Chapter 10. Tensor Products

the generalized pigeon-hole principle some ji ≥ l which
implies that Sji = 0V→V and hence each term in (10.5)
is zero.

11. The formula is Tr(Tk(S)) = Tr(S)k. The proof
is by induction on k. By Exercise 13 of Section (10.2)
Tr(S ⊗ S) = Tr(S)2. Assume the result is true for
k: Tr(Tk(S)) = Tr(S)k. Again by Exercise 13 of
Section (10.2) Tr(Tk+1(S)) = Tr(Tk(S) ⊗ S) =

Tr(Tk(S))Tr(S) = Tr(S)kTr(S) = Tr(S)k+1.

12. We claim that det(Tk(S)) = det(S)kn
k−1

. We do
induction on k ≥ 1. When k = 1 the result clearly
holds. Also, for k = 2 we can apply Exercise 15 of Sec-
tion (10.2) to obtain det(S ⊗ S) = det(S)ndet(S)n =

set(S)2n as required.

Assume now that det(Tk(S)) = det(S)kn
k−1

. Now
Tk+1(S) = Tk(S) ⊗ S. The dimension of Tk(V ) = nk.

Then by Exercise 15 we have

det(Tk+1(S)) = det(Tk(S)⊗ S) =

det(Tk(S))ndet(S)n
k

=

(det(S)kn
k−1

)ndet(S)n
k

=

det(S)kn
k

det(S)n
k

= det(S)(k+1)nk

.

10.4. The Symmetric Algebra

1. S = (v1, . . . ,vn) be a sequence of vectors. We
will denote by ⊗(S) the product v1 ⊗ · · · ⊗ vn. Also,
for a permuation π of {1, . . . , n} we let π(S) =

(vπ(1), . . . ,vπ(n)). We therefore have to prove that
⊗(S) − ⊗(π(S)) ∈ I for all sequences S and permu-
ations π. We first prove that the result for permuations
(i, j) which exchange a pair i < j and leave all other k in
{1, . . . , n} fixed. We prove this by induction on j − i.

For the base case, j = i + 1 we have vi ⊗ vi+1 −
vi+1 ⊗ vi ∈ I and then for every x ∈ Ti−1(V ),y ∈
Tn−i−1(V ),x⊗ [vi⊗vi+1−vi+1⊗vi]⊗y ∈ I. There-
fore ⊗(S)−⊗((i, i+ 1)S) ∈ I.

Now assume that i < k and for all j with i < j < k

⊗(S)−⊗((i, j)(S)) ∈ I. It suffices to prove that

vi ⊗ vi+1 ⊗ . . .vk−1 ⊗ vk−

vk ⊗ vi+1 ⊗ · · · ⊗ vk−1 ⊗ vi ∈ I.

By the induction hypothesis each of the following are in
I:

vi ⊗ vi+1 ⊗ · · · ⊗ vk−1 ⊗ vk−

vi+1 ⊗ vi ⊗ vi+2 ⊗ · · · ⊗ vk

vi+1 ⊗ vi ⊗ vi+2 ⊗ · · · ⊗ vk−

vi+1 ⊗ vk ⊗ vi+2 ⊗ . . .vk−1 ⊗ vi

vi+1 ⊗ vk ⊗ vi+2 ⊗ · · · ⊗ vk−1 ⊗ vi−

vk ⊗ vi+1 ⊗ vi+2 ⊗ · · · ⊗ vk−1 ⊗ vi.

The sum of these is

vi ⊗ vi+1 ⊗ . . .vk−1 ⊗ vk−

vk ⊗ vi+1 ⊗ · · · ⊗ vk−1 ⊗ vi

which is therefore in I.

We now use the fact that every permutation can be writ-
ten as a product of transpositions - permutations of type
(i, j). We do induction on the number of transpositions
needed to express the permutation π. We have already
proved the base case. Suppose we have shown if π that
can be expressed as a product of k transpositions then
⊗(S) − ⊗(π(S)) ∈ I and assume that τ = σk+1 . . . σ1

a product of transpostions. Set γ = σk . . . σ1. Then
⊗(S)−⊗(τ(S))

[⊗(S)−⊗(γ(S))] + [⊗(γ(S))−⊗(σk+1(γ(S)))].

[⊗(S)−⊗(γ(S))] is in I by the inductive hypothesis and
[⊗(γ(S))−⊗(σk+1(γ(S)))] ∈ I by the base case. Thus,
⊗(S)−⊗(τ(S)) ∈ I as required.
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10.5. Exterior Algebra 105

2. We use the identification of Sym(V ) with
F[x1, . . . , xn]. Under this identification Symk(V ) corre-
sponds to the subspace of homogeneous polynomial of
degree k. A basis for this consists of all xe1

1 . . . xen
n where

e1, . . . , en are non-negative and e1 + · · · + en = k. This
is equal to the number ways that n bins can be filled with
k balls (where some bins can be empty). This is a stan-
dard combinatorics problem. The answer is

(
k+n−1

k

)
=(

k+n−1
n−1

)
.

3. Let (v1, . . . ,vn) be a basis of V consisting of eigen-
vectors of T with T (vi) = αi. Under the correspon-
dence of Symk(V ) with the homogeneous polynomials
of F[v1, . . . ,vn] of degree k the monomial ve1

1 . . .ven
n

where (e1, . . . , en) is a sequence of non-negative integers
with e1 + · · ·+ en = k is an eigenvector with eigenvalue
αe1
1 . . . αen

n .

4. The eigenvalues are 1, 2, 8, 16 with multiplicity 1 and
4 with multiplicity 2. This operator is not cyclic.

5. a23 − a2.

10.5. Exterior Algebra

1. Minic the proof of Exercise 1 of Section (10.4).

2. We let [1, n] = {1, . . . , n} and Sn = {π :

[1, n] → [1, n]|π is bijective} and S∗
n = Sn \ {I[1,n].

Set W0 = (v1, . . . ,vk). Denote by Sn(W0) the set
{(vπ(1), . . . ,vπ(k))|π ∈ Sn} and set [Bk]′ = Bk \
Sn(W0). Also, for W = (w1, . . . ,wk) ∈ Bk set
⊗(W ) = w1 ⊗ · · · ⊗ wk. Finally, for W ∈ Sn(W0)

and π ∈ Sn let (W,π) = ⊗(W )− sgn(π)⊗ (π(W )).

A typical spanning vector inJk has the form x1 ⊗ · · · ⊗
xi⊗y⊗y⊗z1⊗· · ·⊗zj where i+j+2 = k. Express each
of xr,y, zs as a linear combination of the basis B. Then
x1⊗· · ·⊗xi⊗y⊗y⊗z1⊗· · ·⊗zj is a linear combination
of ⊗(W ),W ∈ [Bk]′ and (W, τ),W ∈ Sn(W0), τ ∈ Sn.

3. We continue with the notation introduced in the so-
lution of Exercise 2 with k = n so that W0 = B =

(v1, . . . ,vn). Our first claim is that

Span((W,π)|W ∈ Sn(B), π ∈ S∗
n) =

Span((B, π)|π ∈ S∗
n).

Since (B, π) ∈ Span((W,π)|W ∈ Sn(B), π ∈ S∗
n), we

need only prove the inclusion

Span((W,π)|W ∈ Sn(B), π ∈ S∗
n) ⊂ Span((B, π)|π ∈ S∗

n)

, equivalently,

(W,π) ∈ Span((B, π)|π ∈ S∗
n).

Suppose W = σ(B). Then (B, σ) and (B, πσ) ∈
Span(B, π)|π ∈ S∗

n). Taking the difference we obtain

(B, σ)− (B, πσ) =

[⊗(B)− sgn(σ)(⊗(σ(B))]−

[⊗(B)− sgn(πσ)(⊗(πσ(B))] =

sgn(πσ)(⊗(π(W ))− sgn(σ)(⊗(W )) =

sgn(σ)sgn(π)(⊗(π(W ))− sgn(σ)(⊗(W )) =

−sgn(σ)(W,π)

which establishes the claim.

Next note that Span(⊗(W )|W ∈ [Bn]′) ∩
Span(⊗(W )|W ∈ Sn(B)) = {0}. Therefore, if
⊗(B) ∈ Jn then, in fact, ⊗(B) is a linear combination of
(B, π), π ∈ S∗

n.

Suppose ⊗(B) ∈ Span((B, π)|π ∈ S∗
n). Let σ ∈

S∗
n. Then −(B, σ) + ⊗(B) ∈ Span((B, π)|π ∈ S∗

n).

However, −(B, σ) + ⊗(B) is ± ⊗ (σ(B)) and conse-
quently, ⊗(σ(B)) ∈ Span((B, π)|π ∈ S∗

n). Since the
set {⊗(σ(B))|σ ∈ Sn} is linear independent this will
imply that Span((B, π)|π ∈ S∗

n) has dimension n! On
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the other hand, there are only n! − 1 generating vec-
tors so dim(Span(B, π)|π ∈ S∗

n) ≤ n! Thus, ⊗(B) /∈
Span((B, π)|π ∈ S∗

n).

This implies that ∧n(V ) has dimension at least one. On
the other hand it has been established that dim(∧n(V ))

has dimension at most one and therefore exactly one.
Since ∧n(V ) has dimension one with basis v1 ∧ · · · ∧ vn

there is a unique map F : ∧n(V ) → F such that
F (v1∧· · ·∧vn) = 1. By the universal property of ∧n(V )

this implies that there is a unique alternating n−linear
form f on V such that f(B) = 1.

4. Let (w1, . . . ,wk) be a sequence of vectors from V.

Then

∧k(SR)(w1 ∧ · · · ∧wk) =

(SR)(w1) ∧ · · · ∧ (SR)(wk) =

S(R(w1)) ∧ · · · ∧ S(R(wk)) =

∧k(S)(R(w1) ∧ · · · ∧R(wk)) =

∧k(S)(∧k(R)(w1 ∧ · · · ∧wk)) =

(∧k(S) ∧k (R))(w1 ∧ · · · ∧wk).

5. Let BV = (v1, . . . ,vn) be a basis of V. For a sequence
(u1, . . . ,uk) we let ∧(u1, . . . ,uk) = u1 ∧ · · · ∧ uk.

We continue with the notation of Exercises 2 and 3.
To show that S is injective it suffices to show that the
image of a basis of ∧k(V ) is linearly independent in
∧k(W ). Now {∧k(Φ)|Φ ∈ Sn(v1, . . . ,vk)} is a ba-
sis for ∧k(V ). Since S is injective, (w1, . . . ,wn) =

(S(v1), . . . , S(vn)) is linearly independent in W. Ex-
tend to a basis (w1, . . . ,wm) for W. Then {∧k(Ψ)|Ψ ∈
Sm(w1, . . . ,wk)} is a basis for ∧k(W ). In particular,
{∧k(Ψ)|Ψ ∈ Sn(S(w1, . . . ,wk))} = {∧k(Ψ)|Ψ ∈
Sn((S(v1), . . . , S(vk))} is linearly independent. How-
ever,

∧k((S(vπ(1)), . . . ,vπ(k)) = S(vπ(1))∧· · ·∧S(vπ(k)) =

∧k(S)(vπ(1) ∧ · · · ∧ vπ(k))

Thus, {∧k(S)(∧k(Φ))|Φ ∈ Sn(v1, . . . ,vk)} is linearly
independent and ∧k(S) is injective.

6. If V is n−dimensional and S is nilpotent then Sn =

0V→V . Since ∧(S)n = ∧(Sn) = 0∧(V )→∧(V ). Thus,
∧(S) is nilpotent.

7. Let (v1, . . . ,vn) be a basis of V such that S(vi) =

αivi. Then vi1 ∧ · · · ∧ vik is an eigenvector of ∧k(S)

with eigenvalue αi1 . . . αik . Since {vi1 ∧ · · · ∧ vik |1 ≤
i1 < · · · < ik ≤ n} is a basis for ∧k(V ) it follows that
∧k(S) is diagonalizable.

8. det(∧k(S)) = det(S)(
n−1
k−1). This can be proved by

showing it holds for elementary operators (matrices).

9. Let S : R4 → R4 be the operator with matrix


0 1 0 0

−1 0 0 0

0 0 3 4

0 0 −3 4


 .

Then the eigenvalues of S are ±i, 3 ± 4i. On the other
hand, the eigenvalues of ∧2(S) are 1, 25, −4 + 3i, 4 +

3i,−4− 3i, 4− 3i.

10. Let (v1,v2,v3,v4) be linearly independent and set
x = v1∧v2+v3∧v4. Then x∧x = 2(v1∧v2∧v3∧v4).

11. Since multiplication is distributive φ is additive in
each variable. Since (cw) ∧ v = w ∧ (cv=c(w ∧ v), in
fact, φ is bilinear. In light of bilinearity, to show that φ
is symmetric it suffices to show that it is for decompos-
able vectors, that is, vectors of the form v1 ∧ · · · ∧ v2n.

However,

(v1 ∧ · · · ∧ v2n) ∧ (w1 ∧ · · · ∧w2n) =

(−1)4n
2

(w1 ∧ · · · ∧w2n) ∧ (v1 ∧ · · · ∧ v2n)

from which it follows that

φ(vv1 ∧ · · · ∧ v2n,w1 ∧ · · · ∧w2n) =

φ(w1 ∧ · · · ∧w2n,v1 ∧ · · · ∧ v2n).

We now need to show that φ is non-degenerate. For a
subset α = {i1 < · · · < i2n} of [1, 4n] let vα = vi1 ∧
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10.6. Clifford Algebra 107

· · · ∧ vi2n . Also denote by α′ the complementary subset
α′ = [1, 4n] \ α. Note that vα ∧ vβ = 0∧2n(V ) if β �= α′

and vα ∧ vα′ = ±v1 ∧ · · · ∧ v4n.

Now suppose that x =
∑

α cαvα where the sum is
taken over all subsets α of [1, 4n] of size 2n and that
x �= 0∧2n(V ). Then some cα �= 0. Then x ∧ vα′ = ±cα
and φ(x,vα′) �= 0. In particular, x is not in the radical.
Since x is arbitrary the radical of φ is just the zero vector.

12. We need to show that there are totally singular sub-
spaces of dimension 3. Note that the singular vectors are
precisely the decomposable vectors. Let (v1, . . . ,v4) be
a basis for V. Then Span(v1 ∧ v2,v1 ∧ v3,v1 ∧ v4) is a
totally singular subspace of dimension 3. A second class
of singular subspaces of dimension 3 is represented by
]′pan(v1 ∧ v2,v1 ∧ v3,v2 ∧ v3).

13. As in the proof of Exercise 11, the form is bilinear.
Now we have

(v1 ∧ · · · ∧ vn) ∧ (w1 ∧ · · · ∧wn) =

(−1)n
2

(w1 ∧ · · · ∧wn) ∧ (v1 ∧ · · · ∧wn) =

−(w1 ∧ · · · ∧wn) ∧ (v1 ∧ · · · ∧wn

Suppose now that (v1, . . . ,v2n) is a basis of V . For a
subset α = {i1 < · · · < in} of [1, 2n] set vα = vi1 ∧
· · · ∧ vin . As in Exercise 18, if β �= α′ = [1, 2n] \ α then
vα ∧ vβ = 0∧2n(V ).

Let x = cαvα + cα′vα′ . Then x2 = x ∧ x =

cαcα′vα ∧ vα′ + cα′cαvα′ ∧ vα =

cαcα′vα ∧ vα′ − cα′cαvα ∧ vα′ = 0∧2n(V ).

It follows from the previous two paragraphs that x ∧ x =

0∧2n(V ) for any vector x ∈ ∧n(V ) and therefore φ is
alternating. The proof that φ is non-degenerate is exactly
as in Exercise 11.

14. x6 + 14x4 + 96x3 − 128x− 32.

15. x3 + 6x2 − 9.

16. x6 − 3x4 − 27x3 − 9x2 + 27.

10.6. Clifford Algebra

1. Let v be a non-zero vector in V . Set a = φ(v) < 0.
Let c =

√
−a. By replacing v, if necessary, by 1

cv we
can assume that φ(v) = −1. Since dim(V ) = 1, V =

Span(v). Then T (V ) is isomorphic to R[x]. The ideal
Iφ is generated by v ⊗ v + 1 which corresponds to the
polynomial x2 + 1. Thus, T (V )/Iφ is isomorphic to C.

2. Let α = {i1 < · · · < ik} and assume j /∈ α. Then
vjvis = −visvj for 1 ≤ s ≤ k. It follows by induction
on k that vjvα = (−1)kvαvj .

3. Continue with the notation of 2 and assume is = j.
Then vjvα = vjvi1 . . .vis . . .vik =

(−1)s−1vi1 . . .vis−1vjvis . . .vik =

(−1)s−1vi1 . . .vis−1
vjvj . . .vik =

(−1)s−1vi1 . . .vis−1φ(vj)vs+1 . . .vik =

(−1)s−1φ(vj)vα\{j}.

4. Assume first that I is a homogeneous ideal of A =

A0 ⊕ A1. Then I = I ∩ A0 ⊕ I ∩ A1 from which it
immediately follows that I is generated as an ideal by
(I ∩A0) ∪ (I ∩A1).

Conversely, assume X is a set of homogeneous ele-
ments of A and I consists of all elements of the form
z = b1x1c1 + · · ·+ bkxkck + d1y1e1 + . . . dlylel where
xi ∈ X ∩A0, yi ∈ X ∩A1, bi, ci, di, ei ∈ A. We need to
show the homogeneous parts of zR are in I. Write each
bi as bi0 + bi1 where bit ∈ At and similarly for ci, di and
ei. Set

z0 =

k∑
i=1

(bi0xici0+ bi1xici1)+

l∑
i=1

(di0yiei1+di1yiei0)
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z1 =

k∑
i=1

(bi0xici1+ bi1xici0)+

l∑
i=1

(di0yiei0+di1yiei1)

Then z0 ∈ A0, z1 ∈ A1 and z = z0 + z1. Now each of
bisxicit and disyieit belongs to I and therefore z0, z1 ∈ I
and I is a homogeneous ideal.

5. Let (v1,v2) be an orthogonal basis for V . As in the so-
lution to Exercise 1 we can assume that φ(v1) = φ(v2) =

−1. Set i = v1, j = v2 and k = v1v2 then (1, i, j, k) is a
basis for C(V ). Note that i2 = φ(v1) = −1 = φ(v2) =

j2. Since v1 ⊥ v2, ij = v1v2 = −v2v1 = −ji. By
Exercise 3, ki = (ij)i = i(−ij) = −i2j = j. Simiarly,
jk = i = −kj. It follows that C(V ) is isomorphic to the
division ring of quaterions.

6. Let (x,y) be a hyperbolic basis for V . Then φ(x +

y) = φ(x) + φ(y) + 〈x,y〉φ = 0 + 0 + 1. Therefore
x2 + y2 + xy + yx = 1. Since (1,x,y,xy) is a basis
for C(V ) and Span(x,y,xy,yx) contains {1,x,y,xy}

also (x,y,xy,yx) is a basis. Denote by
(
a11 a12
a21 a22

)
the

vector a11xy+a12x+a21y+a22yx. Let’s determine the
product of a11xy+ a12y+ a21x+ a22yx with b11xy+

b12x+ b21y + b22yx. We note the following:

x2 = y2 = x(xy) = y(yx) = (yx)x = (xy)y = 0

x(yx) = x = (xy)x,y(xy) = y = (yx)y

(xy)2 = xy, (yx)2 = yx.

Now the product of a11xy + a12x + a21y + a22yx and
b11xy + b12x+ b21y + b22yx is

(a11b11 + a12b21)xy+

(a11b12 + a12b22)x+

(a21b11 + a22b21y+

(a21b12 + a22b22)yx.

It follows that the map from a11xy+a12x+a21y+a22yx

to
(
a11 a12
a21 a22

)
is an isomorphism of algebras and C(V )

is isomorphic to M22(F).
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Chapter 11

Linear Groups and Groups of Isometries

11.1. Linear Groups

1. The order of GL(V ) is equal to the number of bases of
V . When dim(V ) = n and the field is Fq this is

q(
n
2)

n∏
i=1

(qi − 1).

Since SL(V ) is the kernel of det : GL(V ) → F∗
q and the

determinant is surjective, |SL(V )| = |GL(V )|/|F∗
q | =

q(
n
2)

n∏
i=1

(qi − 1)× 1

q − 1
= q(

n
2)

n∏
i=2

(qi − 1).

2. Let j = dim(U1 ∩ U2). Let (x1, . . . ,xj) be a bass
for U1 ∩ U2 and (y1, . . . ,yj) a basis for W1 ∩ W2. Set
t = k − j. Let (u1, . . . ,ut) be vectors in U1 such that
(x1, . . . ,xj ,u1, . . . ,ut is a basis for U1 and (v1, . . . ,vt)

vectors from U2 such that (x1, . . . ,xj ,v1, . . . ,vt) is
a basis for U2. Let (w1, . . . ,wt) be vectors from
W1 such that (y1, . . . ,yj ,w1, . . . ,wt) is a basis of
W1 and (z1, . . . ,zt) be vectors from W2 such that
(y1, . . . ,yj , z1, . . . ,zt) is a basis for W2. Now
(x1, . . . ,xj ,u1, . . . ,ut,v1, . . . ,vt) is a basis for U1 +

U2 and (y1, . . . , yj ,w1, . . . ,wt, z1, . . . ,zt) is a ba-
sis for W1 + W2. Set s = n − [k + t] and
let (p1, . . . ,ps) be sequence of vectors such that
(x1, . . . ,xj ,u1, . . . ,ut,v1, . . . ,vt,p1, . . . ,ps) is a ba-
sis for V and (q1, . . . , qs) a sequence of vector such that

(y1, . . . , yj ,w1, . . . ,wt, z1, . . . ,zt, q1, . . . , qs) is also a
basis for V . Now let S be the linear transformation such
that

S(xi) = yi for 1 ≤ i ≤ j

S(ui) = wi for 1 ≤ i ≤ j

S(vi) = zi for 1 ≤ i ≤ j

S(pi) = qi for 1 ≤ i ≤ s

Then S is an invertible operator, S(U1) = W1, S(U2) =

W2.

3. Since every one dimensional subspace is an intersec-
tion of the k-dimensional subspaces which contain it we
can conclude that every vector of V is an eigenvector.
Then by the proof of Lemma (11.1), T ∈ Z(GL(V )).

4. We may assume that H1 �= H2. Then dim(H1∩H2) =

n−2 and P ⊂ H1∩H2. Let P = Span(x1) and extend to
a basis (x1, . . . ,xn−2) for H1∩H2. Let xn−1 be a vector
such that (x1, . . . ,xn−1) is a basis for H1 and let xn be
a vector in H2 such that (x1, . . . ,xn−2,xn) is a basis
for H2. Note that xn−1 /∈ H2 and xn /∈ H1. Let S ∈
χ(P,H1) and T ∈ χ(P,H2). For 1 ≤ i ≤ n− 2, S(xi =

T (xi) = xi so, in particular, ST (xi) = TS(xi) = xi.
It there suffices to prove that ST (xj) = TS(xj) for j =

n − 1, n. Now S(xn−1) = xn−1 and there is a scalar, a,
such that S(xn) = xn + ax1. Similarly, T (xn) = xn

and there is scalar, b, such that T (xn−1) = xn−1 + bx1.
Now

TS(xn−1) = T (xn−1) = xn−1 + bx1,
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TS(xn) = T (xn + ax1) = xn + ax1.

ST (xn−1) = S(xn−1) = xn−1 + bx1,

ST (xn) = S(xn) = xn + ax1.

Since ST and TS agree on a basis, ST = TS.

5. Set x′
n−1 = bxn−1 − axn and H =

Span(x1, . . . ,xn−2,x
′
n−1). Then ST (x′

n−1) = x′
n−1.

Since ST (xn) = xn + ax1 it follows that ST = TS ∈
χ(P,H).

6. Let Pi = Span(xi), i = 1, 2. Extend x1,x2) to a basis
(x1, . . . ,xn−1) of H and then to a basis (x1, . . . ,xn) of
V . Let S ∈ χ(P1, H) and T ∈ χ(P2, H). Now S(xj) =

xj = T (xj) for 1 ≤ j ≤ n − 1. Moreover, there are
scalars, a, b such that S(xn) = xn + ax1 and T (xn) =

xn + bx2. Then

ST (xn) = S(xn + bx2) = xn + ax1 + bx2, TS(xn) =

T (xn + ax1) = xn + bx2 + ax1.

Since ST and TS agree on a basis, ST = TS.

7. Set x′
1 = ax1 + bx2 and P ′ = Span(x′

1). Now ST =

TS is the identity when restricted to H and ST (xn) =

xn + x′
1 and therefore ST ∈ χ(P ′, H).

8. Let (x1, . . . ,xn−2) be a basis of H1 ∩ H2 and let
yi ∈ Pi, i = 1, 2 be nonzero vectors. Since y1 /∈ H2,
in particular, y2 /∈ H1 ∩H2 so that (x1, . . . ,xn−2,y1) is
a linearly independent and therefore a basis of H1. Sim-
ilarly, (x1, . . . ,xn−2,y2) is a basis of H2. Set W =

Span(y1,y2). Note that if S is in the subgroup of GL(V )

generated by χ(P1, H1) and χ(P2, H2) then S(v) = v

for every vector v ∈ H1 ∩ H2. Consequently, the map
S → S|W is an injective homomorphism. Set BW =

(y1,y2). Denote by π(S) the restriction of S to W .

Now assume S ∈ χ(P1, H1). Then S(y1) = y1 and
there is a scalar a such that S(y2) = ay1+y2. Therefore

Mπ(S)(BW ,Bw) =

(
1 a

0 1

)
. If T ∈ χ(P2, H2) then

T (y2) = y2 and there is a scalar b such that T (y1) =

y1 + by2. Therefore Mπ(T )(BW ,BW ) =

(
1 0

b 1

)
.

It follows that 〈χ(P1, H2), χ(P2, H2)〉 is isomorphic to
SL2(F) = SL(W ).

9. First assume that P1 + P2 ⊂ H1 ∩ H2. Assume
Pi = Span(xi), i = 1, 2. Then (x1,x2) is linearly in-
dependent. Extend to a basis (x1, . . . ,xn−2) of H1∩H2.
Let yi ∈ Hi, i = 1, 2 such that (x1, . . . ,xn−2,yi) is
a basis of Hi. Let Si ∈ χ(Pi, Hi), i = 1, 2. Then
Si(xj) = xj for i = 1, 2 and 1 ≤ j ≤ n − 2 More-
over, Si(yi) = yi for i = 1, 2. On the other hand, there
are scalars, a1, a2 such that S1(y2) = a1x1 + y1 and
S2(y1) = y1 + a2x2. To prove that S1S2 = S2S1 we
need only show that S1S2 agree on y1 and y2.

S1S2(y1) = S1(y1 + ax2) = y1 + a2x2,

S2S1(y1) = S2(y1) = y1 + a2x2.

S1S2(y2) = S1(y2) = a1x1 + y2,

S2S1(y2) = S2(a1x1 + y2) = a1x1 + y2.

So we must now show if P1+P2 is not contained in H1∩
H2 then χ(P1, H1) and χ(P2, H2) do not commute. By
Exercise 8 we can assume that either P1 ⊂ H2 or P2 ⊂
H1. Without loss of generality assume P1 ⊂ H2. Let
P1 = Span(x), P2 = Span(y). Since x ∈ H1 ∩ H2

there is a basis (x = x1, . . . ,xn−2) for H1 ∩H2. Since
y /∈ H1 ∩H2 the sequence (x1, . . . ,xn−2,y) is basis of
H2. Let xn−1 be a vector in H1 such that (x1, . . . ,xn−1)

is a basis for H1. Now let Si ∈ χ(Pi, Hi) for i = 1, 2.
Then S1(xj) = xj for 1 ≤ j ≤ n − 1 and there is a
scalar, a1 such that S1(y) = y + a1x1. On the other
hand, S2(xj) = xj for 1 ≤ j ≤ n − 2, S(y) = y and
there is a scalar, a2 such that S2(xn−1) = xn−1 + a2x2.
We now compute S1S2(xn−1) and S2S1(xn−1).

S1S2(xn−1) = S1(xn−1+a2y) = xn−1+a2y2+a1a2x,
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S2S1(xn−1) = S2(xn−1) = xn−1 + a2y.

Thus, S1S2 �= S2S1.

10. Let T ∈ χ(P,H) and y = S(x),x ∈ H . Then
(STS−1)(y) = (STS−1)(S(x)) = ST (x) = S(x) =

y.

On the other hand, assume w ∈ V,w /∈ S(H). Set
u = S−1(w) so that u /∈ H . Now (STS−1)(w)−w =

(STS−1)(S(u)) − S(u) = S(T (u) − u). Since T ∈
χ(P,H), T (u) − u ∈ P and therefore S(T (u) − u) ∈
S(P ) so that STS−1 ∈ χ(S(P ), S(H)). This proves that
Sχ(P,H)S−1 ⊂ χ(S(P ), S(H)). Since this also applies
to S−1 we get the reverse inclusion and equality.

11.2. Symplectic Groups

1. If y ∈ x⊥ then Tx,c(y) = y. On the other hand, if
y /∈ x⊥ then (Tx,c − IV )(y) = cf(y,x)x ∈ x⊥. Thus,
Tx,c ∈ χ(Span(x),x⊥) and, therefore, is a transvection.

2. If y ∈ x⊥ then Tx,cTx,d(y) = y = Tx,c+d(y). On the
other hand, assume f(y,x) = 1. Then

Tx,cTx,d(y) = Tx,c(y + dx) = y + dx+ cy =

y + (c+ d)x = Tx,c+d(y).

3. If y ∈ x⊥ then Tbx,c(y) = y = Tx,b2c(y). On the
other hand, assume f(y,x) = 1 then

Tbx,c(y) = y+ cf(u, bx)(bx) = y+ b2cx = Tx,b2c(y).

4. If x ⊥ y then Span(x) + Span(y) ⊂ x⊥ ∩ y⊥. By
Exercise 9 of Section (11.1) χ(x) = χ(Span(x),x⊥)

and χ(Span(y),y⊥) = χ(y) commute.

5. This is an instance of Exercise 10 of Section (11.1).

6. Let (x1, . . . ,xny1, . . . ,yn) be a hyperbolic basis and
T ∈ Ψ(x1) act as follows:

T (x1) = x1

T (y1) = y1 +

n∑
k=2

(akxk + bkyk) + γx1

T (xj) = xj − bjx1 for 2 ≤ j ≤ n

T (yj) = yj + ajx1 for 2 ≤ j ≤ n

If S ∈ Sp(V ) set x′
j = S(xj) and y′

j = S(yj). If
T ′ = STS−1 then

T ′(x′
1) = x′

1

T ′(y′
1) = y′

1 +

n∑
k=2

(akx
′
k + bky

′
k) + γx′

1

T ′(x′
j) = x′

j − bjx
′
1 for 2 ≤ j ≤ n

T ′(y′
j) = y′

j + ajx
′
1 for 2 ≤ j ≤ n

Thus, STS−1 = T ′ ∈ Ψ(x′
1).

7. This follows from Exercise 6.

8. We continue with the notation of Exercise 6. For

a =



a2
...
an


 , b =



b2
...
bn


 and γ ∈ F denote by T (a, b, γ)

the operator with the action as in Exercise 6. Let also

c =



c2
...
cn


 ,d =



d2
...
dn


 ∈ Fn−1 and δ ∈ F. It is a

straightforward calculation to see that

T (a, b, γ)T (c,d, δ) =

T (a+ c, b+ d, δ + γ − btrd+ atrc) =

T (c,d, δ)T (a, b, γ).

9. Let X = Span(x), Y1 = Span(y) and Y2 =

Span(z) where f(y,x) = 1 = f(z,x). Set x1 = x

and y1 = y and extend (x1,y1) to a hyperbolic basis
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(x1, . . . ,xn,y1, . . . ,yn). Write z as a linear combina-
tion of this basis and note that since f(z,x) = f(y,x) =

1 the coefficient of y1 is 1. Thus,

z = y1 +

n∑
k=2

(akxk + bkyk) + γx1.

By Lemma (11.15) if T ∈ Ψ(x) and T (y) = T (y1) = z

then T is unique.

10. Let (x = x1, . . . ,xn,y1, . . . ,yn) be a hyperbolic
basis of V . Set S0 = (x1, . . . ,xn) and for 2 ≤ j ≤ n set
Sj = (S0 ∪ {yj}) \ {xj} and set Mj = Span(Sj). Then

∩n
j=2Mj = Span(x1).

11. This is the same as Exercise 10 of Section (8.2).

12. By definition 0 is an identity element. Also every
element v ∈ V is its own inverse with respect to 0. The
definition of addition for α, β ∈ V \ {0} is symmetric
in α and β and therefore is commutative. It remains to
show the addition is associative. If α, β ∈ V \ {0} then
clearly (α+ β) + 0 = α+ (β +0). Thus, we can assume
our three elements are not zero. So let α, β, γ ∈ [1, 6]{2}.
There are several cases to consider: a) |α ∪ β ∪ γ| = 3.

Then α+β = γ, β+γ = α, γ+β = α and (α+β)+γ =

α+(β+γ) = 0. b) α∪β∪γ = [1, 6]. In this case we also
have α+β = γ, β+γ = α, γ+α = β and (α+β)+γ =

α+(β+γ) = 0. c) |α∪β∪γ| = 1. Then |α∪β∪γ| = 4

and (α + β) + γ = α + (β + γ) = [1, 6] \ (α ∪ β ∪ γ).
d) α ∩ β ∩ γ = ∅ and |α ∪ β ∪ γ| =. Without loss of
generality we can assume that α ∩ β = ∅, γ ⊂ α ∪ β.
Then (α + β) + γ = α + (β + γ) = (α ∪ β) \ γ. e)
|α∪ β ∪ γ| = 5. Then we can assume that α∩ β = ∅ and
|α∩ γ| = 1, β ∩ γ = ∅. Let [1, 6] \ (α∪β ∪ γ) = {i} and
α∩ γ = {j}. Then (α+ β) + γ = α+ (β + γ) = {i, j}.

13. If f is bilinear then by its definition it is alternating
since f(v,v) = 0 for every v ∈ V . Now f(v,w) =

f(v + 0,w) = f(v,w) + 0 = f(v,w) + f(0,w).
Also, for v,w ∈ V, f(v + w, 0) = f(v, 0) + f(w, 0)

since both sides are zero. We may therefore assume
that the three vectors are α, β, γ ∈ [1, 6]{2}. Again

there are several cases to consider: a) α = β. Then
f(α + β, γ) = f(0, γ) = 0. On the other hand,
f(α, γ) + f(β, γ) = f(α, γ) + f(α, γ) = 0. b) α = γ

and α ∩ β = ∅. Then (α + β) ∩ γ = (α + β) ∩ α = ∅.
Then f(α+β, γ) = f(α+β, α) = 0. On the other hand,
f(α, γ) + f(β, γ) = f(α, α) + f(β, α) = 0 + 0, the lat-
ter since β ∩ α = ∅. In the remaining cases we can now
assume that α, β, γ are distinct. c) α∩ β = ∅, γ ⊂ α∪ β.
Then (α+ β)∩ γ = ∅ and f(α+ β, γ) = 0. On the other
hand under these assumptions, |α∩γ| = |β ∩γ| = 1, and
then f(α, γ) = f(β, γ) = 1 so that f(α, γ) + f(β, γ) =

0. d) α ∪ β ∪ γ = [1, 6]. Then α + β = γ so that
f(α + β, γ) = 0 = f(α, γ) = f(β, γ). Consequently,
f(α + β, γ) = f(α, γ) + f(β, γ). e) α ∩ β = ∅ = α ∩
γ, |β∩γ| = 1. Then |(α+β)∩γ| = 1 and f(α+β, γ) = 1.
On the other hand f(α, γ) = 0, f(β, γ) = 1 and we again
get equality. We can now assume that α, β, γ are distinct
and |α∩ β| = 1. f) We now treat the case that γ ⊂ α∪ β,

that is, γ = α + β. Then f(α, γ) = f(β, γ) = 1 and
f(α + β, γ) = f(γ, γ) = 0 and we have the required
equality. g) |α∩ β ∩ γ| = 1. In this case (α+ β)∩ γ = ∅
so f(α + β, γ) = 0 whereas f(α, γ) = f(β, γ) = 1. h)
α∩β∩γ = ∅, |α∪β∪γ| = 4. Then we may assume that
α∩ γ = ∅, γ intersects β and α+ β. Then f(α+ β, γ) =

1, f(α, γ) = 0, f(β, γ) = 1 and we have equality. i) Fi-
nally, we have the case where γ is disjoint from α ∪ β. In
this case f(α + β, γ) = 0 = f(α, γ) + f(β, γ) and we
are done.

14. Since π ∈ S6 fixes 0, we have for any α ∈ [1, 6]{2}

that f(π(α), 0) = 0 = f(α, 0). Suppose α, β ∈ [1, 6]{2}.
Then α ∩ β = ∅ if and only if π(α) ∩ π(β) = ∅ and
therefore f(π(α), π(β)) = f(α, β). Thus, S6 acts as
isometries of the symplectic space (V, f). By Exercise
11, |Sp4(2)| = 24(24 − 1)(22 − 1) = 16 × 15 × 3 =

24 × 32 × 5 = 6! = |S6|. Therefore, S6 is isomorphic to
Sp4(2).
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11.3. Orthogonal Groups, Characteristic Not Two 113

11.3. Orthogonal Groups,
Characteristic Not Two

1. If x ∈ u⊥ ∩ y⊥ then x ∈ z⊥ and ρzρy(x) = x.
On the other hand, τu,y(x) = x+ 〈x,y〉φu = x. It now
suffices to show that ρzρy(y) = τu,y(y) = y+〈y,y〉φu.
Set a = 〈y,y〉φ so that z = a

2u + y. Now 〈z, z〉φ =

〈y,y〉φ = 〈, z,y〉φ. Now ρz(y) =

y − 2[
〈y, z〉φ
〈z, z〉φ

z] =

y − 2z = y − 2(
a

2
u+ y) =

y − au− 2y = −y − 〈y,y〉φu.

It then follows that ρzρy(y) = ρz(−y) = y +

〈y,y〉φu = τu,y(y).

2. Assume w = v + cu for some scalar c. Let x ∈ u⊥.
Then

τu,w(x) = x+ 〈x,w〉φu =

x+ 〈x,v + cu〉φu =

x+ 〈x,v〉φu = τu,v(x).

Since τu,v and τu,w agree on u⊥ they are identical. Con-
verely, assume τu,v = τu,w. Let x ∈ u⊥. Then
〈x,v〉φ = 〈x,w〉φ so that 〈x,v − w〉φ = 0. Conse-
quently, v −w ∈ Rad(u⊥) = Span(u).

3. We need to prove if v ∈ u⊥ is a singular vector
then τu,v is in the subgroup of Tu generated by all τu,x

where x ∈ u⊥ and x is non-singular. Let x ∈ u⊥

such that 〈v,x〉φ = 〈x,x〉φ. Since x �⊥ v the sub-
space Span(v,x) is non-degenerate. Let y be a vector
in Span(v,x) such that y ⊥ x and 〈v,y〉φ = 〈y,y〉φ.
It is then the case that v = x + y. By Lemma (11.25)
τu,v = τu,xτu,y .

4. Without loss of generality we can assume 〈u,v〉φ = 1.
Suppose x is a singular vector and 〈u,x〉φ = 1. By

Lemma (11.28) there is a unique element γ ∈ Tu such
that γ(v) = x. Then γTvγ

−1 = Tγ(v) = Tx. It fol-
lows that the subgroup generated by Tu, Tv contains Tx

for every singular vector x. Consequently, the subgroup
generated by Tu, Tv contains Ω(V ). Since Tu, Tv are
subgroups of Ω(V ) we have equality.

5. Let H denote the subgroup of Ω(V ) generated by
χ(l1) ∪ χ(l2) ∪ χ(l3) ∪ χ(l4). We first point out that
x⊥
1 = Span(x1,x2,y2). We claim that Tx1

is gener-
ated by χ(l1) ∪ χ(l4). Let Hx1

be the subgroup of Tx1

generated by χ(l1) ∪ χ(l4). We need to prove if w ∈ x⊥
1

then τx1,w ⊂ Hx1 . Since w ∈ x⊥
1 = Span(x1,x2,y2)

there are scalars a, b, c such that w = ax1 + bx2 + cy2.
By Exercise 2, τx1,w = τx1,bx2+cy2

so we can assume
w = bx2 + cy2. By Lemma (11.25), τx1,bx2+cy2

=

τx1,bx2τx1,cy2 ∈ Hx1 . In exactly the same way, Tx2 is
the subgroup generated by χ(l1) ∪ χ(l2), Ty1 is equal to
the subgroup generated by χ(l2) ∪ χ(l3), and Ty2

is gen-
erated by χ(l3) ∪ χ(l4).

Suppose now that u = cx1 + x2 is a vector in l1. Set
σ = τx1,cx2

. Then σ(x2) = x2 = 〈x2,x1〉φy2 +

〈x2,y2〉φ(cx1) = x2 + cx1. It therefore follows that
σTx2

σ−1 = Tu is contained in H . In exactly the same
way if u ∈ l2 ∪ l3 ∪ l4 then Tu ⊂ H .

Now suppose u is an arbitrary singular vector. We must
show that Tu ⊂ H . By the above we can assume that
u /∈ l1 ∪ l2 ∪ l3 ∪ l4. Let ax1 + x2 be a vector in l1
such that ax1 + x2 ⊥ u and let by2 + y1 be a vector
in l3 such that by2 + y1 ⊥ u. It must be the case that
ax1+x2 ⊥ by2+y1 so that b = −a. Set z1 = ax1+x2

and z2 = y1 − ay2. Then u ∈ Span(z1, z2). Since
Tu = Tcu for any nonzero scalar, c, we can assume that
u = z1 + dz2 for some scalar d. Now set γ = τy2,dz2

.
Then γ(z1) = z1+dz2 = u. Then Tu = γTz1

γ−1 ⊂ H .
It now follows that Ω(V ) ⊂ H and since H ⊂ Ω(V ) we
have equality.

6. Let σ ∈ L1 and u ∈ l1. We claim that σ(u) ∈ l1. It
suffices to prove this for σ ∈ χ(l2) ∪ χ(l4). Suppose
u = x1. If σ ∈ χ(l2) then σ(u) = σ(x1) = x1.
On the other hand, if σ ∈ χ(l4), say σ = τx2,ay1

then
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σ(u) = σ(x1) = τx2,ay1(x1) = x1 + 〈x1,x2〉φay1 +

〈x1, ay1〉φx2 = x1 + ax2 ∈ l1. Similarly, if u = x2

then σ(x2) ∈ l1. Suppose u = x1 + ax2. Then
σ(u) = σ(x1)+aσ(x2) ∈ l1 since σ(x1 and σ(x2) ∈ l1.

Suppose σ = τx1,ay2
. We determine the matrix of σ re-

stricted to l1 with respect to the basis (x1,x2). By what

we have shown this is
(
1 a

0 1

)
. Similarly, the matrix of

τx2,by1
with respect to (x1,x2) is

(
1 0

b 1

)
. It follows

that the restriction of L1 to l1 is isomorphic to SL2(F).
However, this map is injective and therefore L1 is isomor-
phic to SL2(F). Similarly, L2 is isomorphic to SL2(F).

7. Since l1 ∩ l4 = Span(x1), χ(l1) and χ(l4) commute.
Since l1 ∩ l2 = Span(x2), χ(l1) and χ(l2) commute.
Since l2 ∩ l3 = Span(y1) it follows that χ(l2) and χ(l3)

commute. Finally, since l3 ∩ l4 = Span(y2) we can con-
clude that χ(l3) and χ(l4) commute. It now follows that
L1 and L2 commute.

8. We have seen above that L1 leaves l1 invariant and
therefore for σ ∈ L1, σ(B) = B. If σ ∈ χ(l1) acts
trivially on l1 then σ(B) = B. On the other hand, if
σ ∈ χ(l3) then σ(B) ∩ B = ∅. It follows that B is a
block of imprimitivity.

9. The Witt index of W is zero, that is, there are no singu-
lar vectors in W . In particular, for v = ax + y, φ(ax +

y) = a2 + d �= 0. Since a ∈ F is arbitrary, there are
no roots in F of the quadratic polynomial X2 + d which
implies that X2 + d is irreducible in F[X].

10. Let u′ =

(
1 0

0 0

)
,v′ =

(
0 0

0 −1

)
. Then u′,v′

are singular vectors in (M, q) and 〈u′,v′〉q = 1. The

orthogonal complement of U ′ in M is {
(
0 α

α 0

)
|α ∈

K}. Set x′ =

(
0 1

1 0

)
so that q(x′) = 1. Set y′ =

(
0 ω

−ω 0

)
. Then q(y′) = −ω2 = d and

〈x′,y′〉q =

q(x′ + y′)− q(x′)− q ∗ y′) =

det

(
1 + ω 0

0 1− ω

)
−

det

(
1 0

0 1

)
−

det

(
ω 0

0 −ω

)
=

(1 + ω)(1− ω)− 1 + ω2 = 0.

It now follows that q(au′+bv′+cx′+dy′) = ab+c2+e2d

and the linear map that takes u → u′,v → v′,x →
x′,y → y′ is an isometry.

11. It suffices to prove that A ·m ∈ M for A =

(
1 β

0 1

)

and A =

(
1 0

γ 1

)
since these matrices generate SL2(K)

Thus, assume m =

(
a α

α b

)
where a, b ∈ F and α ∈ K.

If A =

(
1 β

0 1

)
then

A ·m =

(
a aβ + α

aβ + α aββ + αβ + αβ + b

)
.

Since aβ + α = aβ + α and aββ + αβ + αβ + b ∈ F
it follows that A · m ∈ M . In a similar fashion if A =(
1 0

β 1

)
then A ·m ∈ M .

12. If A ∈ SL2(K) and m1,m2 ∈ M then TA(m1 +

m2) = A
tr
(m1 + m2)A = A

tr
m1A + A

tr
m2A =

TA(m1) + TA(m2).

If A ∈ SL2(K),m ∈ M and c ∈ F then TA(cm) =

A
tr
(cm)A = c(A

tr
mA = cTA(m). Thus, TA is a lin-

ear operator on M . Since det(A) = 1 also det(A
tr
) =

1. Then det(A
tr
mA) = det(A

tr
)det(m)det(A) =

det(A). Consequently, q(TA(m)) = −det(TA(m)) =

−det(m) = q(m). Thus, TA is an isometry of (M, q).

13. Since the characteristic of F is not two, the center of
SL2(K) = {±I2}. This acts trivially on M and therefore
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11.4. Unitary Groups 115

is in the kernel of the action. On the other hand, since
|K| > 3, PSL2(K) is simple. This implies the either
Range(T ) = PSL2(K) or the action is trivial, which
it is not. Thus, Range(T ) is isomorphic to PSL2(K).

Let z =

(
0 α

α 0

)
. It is straightforward to check

that the action of τu′,z is the same as TA where A =(
1 α

0 1

)
. Thus, Range(T ) contains Tu′ . By Remark

(11.5) Ω(M, q) is generated by Tu′ ∪ Tv′ which are both
contained in Range(T ) and therefore, Range(T ) is iso-
morphic PSL2(K).

11.4. Unitary Groups

1. Assume τ restricted to W is a transvection of W , say
τ ∈ χ(X,X⊥ ∩W ) where X is an isotropic subspace of
W . Let τ̂ be defined as follows: τ̂(w + u) = τ(w) + u

where w ∈ W and u ∈ W⊥. Then τ̂ ∈ χ(X,X⊥) ∈
Ω(V ). If T ∈ Ω(W ) express T as a product, τ1 . . . τk
where τi ∈ χ(Xi, X

⊥
i ∩W ). Prove that T̂ = τ̂1 . . . τ̂k ∈

Ω(V ).

2. Let u,v be isotropic vectors such that f(u,v) = 1 and
set B = (u,v). Let F4 = {0, 1, ω, ω + 1 = ω2}. The six
anistropic vectors are u+ ωv, ωu+ ω2v, ω2u+ v,u+

ω2v, ωu+ v, ω2u+ ωv. If T ∈ SU(V ) then the matrix
of T with respect to B is one of the following:

I2,

(
1 ω

0 1

)
,

(
1 0

ω2 1

)
,

(
0 ω

ω2 0

)
,

(
0 ω

ω2 1

)
,

(
1 ω

ω2 0

)
.

Apart from I2 none of these leave the vector u+ωv fixed
and so SU(V ) is transitive on the six vectors.

3. Let w be an anistropic vector in Span(u,v)⊥ and set
W = Span(u,v,w). Then W is non-degenerate. By
Lemma (11.37) there is an isometry T in Ω(W ) such that

T (u) = ωu, T (v) = ωv. Let τ be the isometry of V
such that τ restricted to W is T and τ restricted to W⊥ is
the identity. Then τ ∈ Ω(V ).

4. Suppose first that Span(u) = Span(v). Let w be
a singular vector such that f(u,w) = 1. By Exercise
3 there is a τ ∈ Ω(V ) such that τ(u) = ωu, τ(w) =

ωw. Then either τ(u) = v or τ2(u) = v. We may
therefore assume that Span(u) �= Span(v). Next as-
sume that f(u,v) �= 0. Let v′ ∈ Span(v) such that
f(u,v′) = 1 and set W = Span(u,v). Then there is
a σ ∈ Ω(W ) such that σ restricted to W⊥ is the iden-
tity and σ(u) = ω2v′. It then follows by Exercise 3
that we can find a γ ∈ Ω(V ) such that γ(v′) = ω(v′).
Then one of the isometries σ, γσ, γ2σ takes u to v. Fi-
nally assume Span(u) �= Span(v) and u ⊥ v. There
exists an isotropic vector x such that u �⊥ x �⊥ v. By
what we have shown there exists τ1, τ2 ∈ Ω(V ) such that
τ1(u) = x, τ2(x) = v. Set τ = τ2τ1. Then τ ∈ Ω(V )

and τ(u) = v.

5. Let u be an isotropic vector and set U = Span(u).
If X is a non-degenerate two dimensional subspace con-
taining u then |I1(X)| = 3, one of which is U . The total
number of two dimensional subspaces containing U is 21
and the number of two dimensional subspaces containing
U and contained in u⊥ is five. Therefore there are 16 non-
degenerate two dimensional subspaces containing U and
16× 2 = 32 one spaces Y in I1(V ) such that Y �⊥ U .

Now let Y ∈ I1(V ) with Y �⊥ U and assume Z is a to-
tally isotropic two dimensional space containing U . Then
|I1(Z)| = 5, one of which is U . On the other hand,
Y ⊥ ∩ Z ∈ I1(U

⊥ ∩ Y ⊥). Now U⊥ ∩ Y ⊥ is a non-
degenerate two dimensional subspace and contains three
one dimensional subspaces in I1(V ). Thus, there exists
exactly three totally isotropic subspaces of dimension two
containing U . We can now conclude that there are 3 × 4

isotropic one spaces W in U⊥,W �= U . We therefore
have 1 + 12 + 32 = 45 one spaces in I1(V ).

6. This was proved in the course of Exercise 5.

7. This was also proved in the course of Exercise 5.
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8. Proved in Exercise 5.

9. f(ax1+ bx2+ cy2+ dy1, ax1+ bx2+ cy2+ dy1) =

ad+ da+ bc+ cb =

Tr(ad) + Tr(bc).

Thus, ax1 + bx2 + cy2 + dy1 is isotropic if and only if
Tr(ad) + Tr(bc) = 0.

10. If X is an anistropic one dimensional space then X⊥

is a non-degenerate three dimensional subspace which
contains 21 one dimensional subspaces. Moreover, if
W = X⊥ then I1(W ) = 9. Therefore P ∩ L1(W ) =

21− 9 = 12,

11. If X,Y are orthogonal and anistropic then X + Y is
non-degenerate as is X⊥∩Y ⊥. A non degenerate two di-
mensional subspace contains 3 isotropic one dimensional
subspaces and two anistropic one dimensional subspaces.
Moreover, the two anistropic one dimensional subspaces
of a non degenerate two dimensional subspace are orthog-
onal.

12. |P| = 85 − 45 = 40. Suppose X ∈ P . As we
have seen in Exercise 10 there are 12 elements Y ∈ P
with Y ⊥ X . Then there are two Z ∈ P with X ⊥
Z ⊥ Y . Therefore there are 40 × 12 × 2 × 1 four-tuples
(X,Y, Z,W ) from P such that they are mutually orthog-
onal. Since there are 4! permutations of {X,Y, Z,W}
the number of subsets of cardinality four of mutually or-
thogonal elements of P is 40×12×2×1

4×3×2×1 = 40.

13. Assume i �= j and let {i, j, k,m} = {1, 2, 3, 4}.
Then P ∩L1(X

⊥
i ∩X⊥

j ) = {Xk, Xm}. Consequently, if
Y ∈ P\l then Y is orthogonal to as most one of Xi. Note
that |P \ l| = 36. For each i there are 12 elements Z ∈ P
such that Z ⊥ Xi. Three of these are Xj , Xk, Xm and so
there are nine elements Z of P \ l such that Z ⊥ Xi. This
accounts for 9× 4 elements of P \ l, which is all of them.
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Chapter 12

Additional Topics

12.1. Operator and Matrix
Norms

1. Let ‖ ‖ be a norm on Fn and let x be a non-zero vector
in Fn. Then Inx = x and ‖ Inx ‖=‖ x ‖. Consequently,
for every non-zero vector, x, ‖Inx‖

‖x‖ = 1. Therefore, ‖
In ‖′= 1.

2. ‖ In ‖F= Trace(Itrn In)
1
2 = n

1
2 =

√
n. By Exercise

1, ‖ ‖F is not induced by any norm on Fn.

3. ‖ A ‖F= (122 + 72 + 22)
1
2 =

√
193, ‖ A ‖1,1=

max{14, 7} = 14, ‖ A ‖∞,∞= max{19, 2} = 19.

AtrA =

(
12 2

7 0

)tr (
12 2

7 0

)
=

(
12 7

2 0

)(
12 2

7 0

)
=

(
193 24

24 4

)
.

The characteristic polynomial of AtrA is X2 − 197X +

196 = (X−1)(X−196). The eigenvalues are 1 and 196.
Thus, ρ(AtrA) = 196 and ‖ A ‖2,2=

√
196 = 14.

4 AtrA = A2 =



11 7 7

7 11 7

7 7 11


. Trace(AtrA) = 33.

Therefore ‖ A ‖F=
√
33.

‖ A ‖1,1=‖ A ‖∞,∞= 5.

The eigenvalues of AtrA are 4 with multiplicity two
and 25 with multiplicity 1. Then ρ(AtrA) = 25 and
‖ A ‖2,2=

√
25 = 5.

5. By Lemma (12.1) there is a positive real number M
such that ‖ T (x) ‖W≤ M ‖ x ‖V . Suppose now that
x0 ∈ V, T (x0) = y0 and ε is a positive real number.
We have to show that there exists δ > 0 such that if ‖
x − x0 ‖V < δ then ‖ T (x) − T (x0) ‖W< ε. Let γ =

max{M, 1} and set δ = ε
γ . Now suppose ‖ x− x0 ‖V <

δ then ‖ T (x) − T (x0) ‖W=‖ T (x − x0) ‖W< M ‖
x− x0 ‖V < εM ≤ M .

6. Since I2n = In we have ‖ In ‖=‖ In · In ‖≤

‖ In ‖ · ‖ In ‖

from which we conclude that ‖ In ‖≥ 1.

12.2. Moore-Penrose Inverse

1. Since µP (x) = x2−x it follows that P 2 = P , whence
P 3 = P . Thus, if X = P then (PI1) and (PI2) hold. Since
P is Hermitian, P ∗ = P and therefore (P 2)∗ = P 2. It
follows if X = P then (PI3) and (PI4) hold so P † = P .

2. If X = diag{ 1
d1
, . . . , 1

dr
, 0, . . . , 0} then DXD = D

and XDX = X so (PI1) and (PI2) hold. Since AX =

XA = diag{1, . . . , 1, 0, . . . , 0} (rank r), (AX)∗ =
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118 Chapter 12. Additional Topics

AX, (XA)∗ = XA so also (PI3) and (PI4) hold. Thus,
X = diag{ 1

d1
, . . . , 1

dr
, 0 . . . , 0} is the Moore-Penrose in-

verse of D.

3. Set X = 1
‖v‖ (a1, . . . , an). Then Xv = 1 and

vXv = v, XvX = X so (PI1) and (PI2) hold. Since
Xv is a real scalar, (Xv)∗ = Xv and (PI4) holds. On the
other hand, vX is the n × n matrix whose (i, j)-entry is
1

‖v‖aiaj which is a Hermitian matrix: (vX)∗ = vX so
(PI3) holds.

4. AA−1A = A so (PI1) holds. A−1AA−1 = A−1 so
(PI2) holds. Since AA−1 = A−1 = In = I∗n, (PI3) and
(PI4) hold. Thus, A† = A−1.

5. Set X = C∗(CC∗)−1. Then CX = Ir so
that XCX = X and CXC = C so that (PI1) and
(PI2) hold. Since CX = Ir, clearly (PI4) holds. On
the other hand, XC = C∗(CC∗)−1C and (XC)∗ =

C∗([CC∗])−1)∗(C∗)∗ = C∗(CC∗)−1C = XC.

6. P 2 = (AA†)2 = AA†AA†. By (PI1), AA†A = A and
therefore (AA†)2 = AA† = P . By (PI3), P ∗ = P so
that (P 2)∗ = P 2.

7. (Im−P )2 = (Im−P )Im−(Im−P )P = (Im−P )+

(P 2 − P ) = Im − P . Also, (IM − P )∗ = I
]
m ∗ −P ∗ =

Im − P .

8. Set X = (A†)∗. We want to show that X = (A∗)†.
A∗XA∗ = A∗(A†)∗A∗ = (AA†A)∗ = A∗ so (PI1)
holds.

XA∗X = (A†)∗A∗(A†)∗ = (A†AA†)∗ = (A†)∗ = X .
Thus, (PI2) holds.

(A∗X)∗ = [A∗(A†)∗]∗ = A†A. However, we then have
A∗X = [(AA∗)∗]∗ = (A†A) = A†A by (PI4) for A.
Thus, (PI3) holds for X relative to A∗.

(XA∗)∗ = AX∗ = A[(A†)∗]∗ = AA†. Since AA†

is Hermitian it follows that XA∗ is Hermitian and (PI4)
holds.

9. Set B = A∗A and X = A†(A∗)† = A†(A†)∗ by
Exercise 7. We show that X is the Moore-Penrose inverse
of B.

BXB = (A∗A)[A†(A†)∗](A∗A) =

(A∗A)[A†{(A†)∗A∗}A =

(A∗A)[A†(AA†)∗}A = (A∗A)[A†(AA†]A =

(A∗AA†)(AA†A) = (A∗)(AA†A) = A∗A = B.

Thus, (PI1) holds.

XBX = [A†(A†)∗](A∗A)[A†(A†)∗] =

A†(AA†)∗AA†(A∗)† =

A†AA†(A∗)† = A†(A∗)† = X.

Consequently, (PI2) holds.

(BX)∗ = [(A∗A)(A†{A†}∗]∗ =

[A∗(AA†){A†}∗]∗ =

({A†}∗)∗(AA†)∗(A∗)∗ =

A†AA†A = A†A.

Since A†A is Hermitian it follows that (BX)∗ is Hermi-
tian, whence, BX is Hermitian and (PI3) holds.

(XB)∗ = {[A†(A†)∗][A∗A]}∗ =

{A†[(A†)∗A∗]A}∗ =

{A†([AA†)∗]A}∗ =

[A†(AA†)A]∗ = A†A

which is Hermitian and (PI4) holds.

10. Since A = AA†A = A(A†A) by (PI4) we have
A∗ = [A(A†A)]∗ = (A†A)∗A∗ = (A†A)A∗. On the
other hand, writing A = (AA†)A and using (PI3) we get
A∗ = [(AA†)A]∗ = A∗(AA†)∗ = A∗(A†A).

11. (A∗A)†A∗ = [A†(A∗)†]A∗ by Exercise 8. By Exer-
cise 7 we have

A†(A∗)†]A∗ = [A†(A†)∗]A∗ =

K23692_SM_Cover.indd   126 02/06/15   3:12 pm



12.2. Moore-Penrose Inverse 119

A†(AA†A)∗ = A†(AA†) by (PI3). By (PI2)
this is equal to A† as desired.

12. A†A = (A∗A)†(A∗A) by Exercise 11. Now A∗A

is Hermitian and therefore so is (A∗A)† by Exercise 8.
Moreover, A†A is Hermitian by (PI4). It follows that

A†A = (A†A)∗ = {[(A∗A)†](A∗A)}∗ =

(A∗A)∗[(A∗A)†]∗ = (A∗A)(A∗A)†.

Since A∗A = AA∗ we have

(A∗A)(A∗A)†. = (AA∗)(AA∗)† =

A[A∗(AA∗)†] = AA†

by Exercise 11.

13. The proof is by induction on n. The base case is triv-
ial. Assume that (An)† = (A†)n. We must show that
(An+1)† = (A†)n+1. We show that for X = (A†)n+1

that (PI1) = (PI4) hold. We make use of Exercise 12:
A†A = AA†. As a consequence we have

An+1(A†)n+1An+1 = (AA†A)(An(A†)nAn).

By the inductive hypothesis, An(A†)nAn = An. Further-
more, AA†A = A. Therefore

(AA†A)(An(A†)nAn) = AAn = An+1.

Thus, (PI1) holds.

(A†)n+1An+1(A†)n+1 = (A†AA†)[(A†)nAn(A†)n] =

A†(A†)n = (A†)n+1.

Thus, (PI2) holds.

(A†)n+1An+1 = (A†A)[(A†)nAn] =

(A†A)(A†A)n = (A†A)n+1.

Since A†A is Hermitian it follows that (A†A)n+1 is Her-
mitian. This proves (PI3). In a similar fashion we have

An+1(A†)n+1 = [AA†]n+1.

Since AA† is Hermitian so is (AA†)n+1 and (PI4) holds.

14. With B = λA and X = 1
λA

† we show (PI1) - (PI4)
hold.

BXB = (λA)(
1

λ
A†)(λA) =

λ(AA†A) = λA = B.

XBX = (
1

λ
A†)(λA)(

1

λ
A†) =

1

λ
(A†AA†) =

1

λ
A† = X.

BX = (λA)(
1

λ
A†) = AA† = (AA†)∗.

XB = (
1

λ
A†)λA) = A†A = (A†A)∗.

15. Assume A∗ = A†. Then (A∗A)2 = (A†A)2 =

A†A = A∗A by Exercise 6. Converely, assume that
(A∗A)2 = A∗A. Then it is straightforward to see that
(A∗A)† = A∗A. From Exercise 11 it follows that
A† = A∗AA∗. It then follows that A = A(A∗AA∗)A =

A(A∗A)2 = AA∗A. Thus, (PI1) holds with X = A∗.
Since A = AA∗A taking adjoints we get A∗ = AA∗A so
(PI2) holds as well. Since both AA∗ and A∗A are Her-
mitian (PI3) and (PI4) are satisfied. Therefore, in fact,
A† = A∗.
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12.3. Nonnegative Matrices

1. Assume akij �= 0 and amjl �= 0. The (i, l)-entry of
Ak+m = AkAm is

∑n
p=1 a

k
ipa

m
pl ≥ akija

m
jl > 0.

2. Assume j ∈ ∆(i) and l ∈ ∆(j). Then (i, j), (j, l) ∈
∆. By Exercise 1, (i, l) ∈ ∆ so that l ∈ ∆(i).

3. Let l ∈ I . Suppose aml �= 0 so that m ∈ ∆(l). Then
by Exercise 2, m ∈ ∆(i) = I . Consequently, Ael ∈
Span(ej |j ∈ I) as was to be shown.

4. Let A =



a11 . . . a1n

... . . .
...

an1 . . . ann


 and B =



b11 . . . b1n

... . . .
...

bn1 . . . bnn


 and assume that {(i, j)|aij �= 0} =

{(i, j)|bij �= 0}. Then akij �= 0 if and only if bkij �= 0. The
result follows from this.

5. (In + A)n−1 =
∑n−1

j=0

(
n−1
j

)
IjnA

n−1−j . Assume i �=
j. Since (In + A)n−1 > 0 for some j, 1 ≤ j ≤ n − 1

the (i, j)-entry of Aj is positive. Fix i, 1 ≤ i ≤ n and
let 1 ≤ l ≤ n, l �= i. Then for some j, ajil > 0 and for
some k, akji > 0. It then follows that aj+k

ii > 0. Thus, A
is irreducible.

6. Let the entries of A be aij . It suffices to prove if A is a
positive m×n matrix, x is a non-zero nonnegative matrix

then Ax �= 0. Let x =



x1

...
xn


 and assume that xj > 0.

The ith entry of Ax is
∑n

k=1 aikxk > aijxj > 0.

7. If ρ(A) = 0 then all the eigenvalues of A are zero and
A is a nilpotent matrix, whence An = 0nn. However,
if Ak > 0 then (Ak)n > 0 which contradicts (Ak)n =

(An)k = 0nn.

8. Assume x > 0 is an eigenvector for A, say Ax =

λx. Since A is non-negative and x > 0, Ax > 0. In
particular, λ > 0. Thus, ρ(A) > 0.

9. Assume Ad = λd. Let aij be the (i, j)-entry of A.
Since d is an eigenvector with eigenvalue ρ(A) we have
for each i,

n∑
j=1

aijdj = ρ(A)di.

Now the (i, j)-entry of D−1AD is dj

di
aij . Then

n∑
j=1

bij =

n∑
j=1

dj
di

aij =

1

di

n∑
j=1

aijdj =

1

di
(λdi) = λ).

It follows that the matrix 1
λD

−1AD is a row stochas-
tic matrix. By Theorem (12.22) it follows that
ρ( 1λD

−1AD) = 1. However, ρ( 1λD
−1AD) =

ρ(D−1AD)
λ) = ρ(A)

λ . Thus, λ = ρ(A).

10. By Theorem (12.19) there are positive vectors x,y

such that ‖ x ‖1= 1 = ytrx, Ax = ρx, Atry = ρy.
By Theorem (12.21), limk→∞[ 1ρA]k = xytr, a rank one
positive matrix. It then follows for some natural number
k that Ak > 0.

11. Assume ω ∈ C, |ω| = 1 and ωzi = |zi| for all i. Then
|z1 + · · ·+ zn| = |ω||z1 + +̇zn| = |ω(z1) + · · ·+ zn)| =
|ωz1 + · · ·+ ωzn| = ||z1|+ · · ·+ |zn|| = |z1|+ . . . |zn|.

We prove the converse by induction on n. Assume n = 2.
Let ω ∈ C, |ω| = 1, such that ωz1 = a ∈ R+. We
need to prove that ωz2 = |z2|, equivalently, ωz2 ∈ R+.
Assume ωz2 = b+ ci where b, c ∈ R. Then |z1 + z2|2 =

|(a + b) + ci|2 = (a + b)2 + c2 = a2 + 2ab + b2 + c2.
On the other hand, (|z1| + |z2|)2 = [a +

√
b2 + c2]2 =

a2 + b2 + c2 + 2a
√
b2 + c2. If c �= 0 or b < 0 then

2ab �= 2a
√
b2 + c2. Therefore c = 0 and b > 0.

Now assume that n > 2 and the result is true for n − 1

complex numbers z1, . . . , zn−1. Assume ω ∈ C, |ω| = 1

so that ωz1 ∈ R+. Replacing zi with ωzi, if necessary, we

K23692_SM_Cover.indd   128 02/06/15   3:12 pm



12.3. Nonnegative Matrices 121

may assume that z1 ∈ R+ and we need to prove that zi ∈
R+ for every i. Suppose |z2+· · ·+zn| < |z2|+· · ·+|zn|.
Then |z1+ · · ·+zn| ≤ |z1|+ |z2+ · · ·+zn| < |z1|+ · · ·+
|zn|, a contradiction. Therefore |z1 + (z2 + · · ·+ zn)| =
|z1|+ |z2 + · · ·+ zn| = |z1|+ . . . |zn|. It follows by the
case for n = 2 that z2 + · · ·+ zn ∈ R+. By the induction
hypothesis, there is γ ∈ C, |γ| = 1 such that γzi = |zi|
for 2 ≤ i ≤ n. Then γ(z2+· · ·+zn) = γz2+· · ·+γzn ∈
R+ which implies that γ = 1.

12. Assume first that A > 0 and that Ax = λx and
|λ| = ρ(A). Then there is a ω ∈ C, |ω| = 1 such that
ωx = |x| > 0. Since Ax = λx we have |Ax| = |λx| =
|λ||x| = ρ(A)|x|. It then follows that A|x| = ρ(A)x to
that |x| is a positive vector. Now assume A is nonnegative
and primitive, λ ∈ Spec(A), λ �= ρ(A) and that Ax =

λx. By Exercise 10 there is a k such that Ak > 0. Then
Akx = λkx and so λk ∈ Spec(Ak). Moreover, ρ(Ak) =

ρ(A)k. By the case just proved, either λk = ρ(A)k of
|λ|k < |ρ(A)|k so that |λ| < |ρ(A)|. However, in the first
case the geometric multiplicity of ρ(A)k is greater than
one which contradicts Theorem (12.19).

13. Let p =



p1
...
pn


. Then 〈p, jn〉 =

∑n
j=1 pn. Thus,

if p ≥ 0 then p is a probability vector if and only if
〈p, jn〉 = 1.

14. Assume pj =



p1j

...
pnj


. Since (s1, . . . , st) is a se-

quence of nonnegative numbers, sjpij ≥ 0 for every i

and j. Then
∑t

j=1 pijsj ≥ 0 so that s1p1 + · · ·+ stpt is
a nonnegative vector. Now

n∑
i=1

t∑
j=1

sjpij =

t∑
j=1

n∑
i=1

sjpij =

∑
j=1

sj

n∑
i=1

pij =
∑
j=1

sj = 1.

15. By Lemma (12.7) (proved in Exercise 16) every col-
umn of s1A1 + · · · + stAt is a probability vector and

therefore s1A1 + · · · + stAt is column stochastic. If
the matrices are bi-stochastic then the argument applies
to Atr

1 , . . . , Atr
t .

16. If the columns of A are c1, . . . , cn and p =



s1
...
sn




then Ap = s1c1 + · · ·+ sncn. Now the result follows by
Lemma (12.7), Exercise 16.

17. If follows from Exercise 18 and the definition of ma-
trix multiplication that the product of two column stochas-
tic matrices is stochastic. If A is stochastic then by induc-
tion it follows that Ak is stochastic.

18. We first prove if p, q are probability vectors and
〈p, q〉 = 1 then p = q = ei for some i. Assume to
the contrary that p �= ei for all i. Then there exists j such
that 0 < pj < 1. Then pjqj < qj from which we con-
clude that

∑n
j=1 pjqj <

∑
j=1 qj = 1, a contradiction.

Let the columns of Atr be a1, . . . ,an and the columns
of A−1 be b1, . . . , bn. Since AA−1 = In it follows that
〈ai, bi〉 = 1 so that {a1, . . . ,an} = {e1, . . . , en} and A

is a permutation matrix.

19. Assume A has more than n entries and therefore some
row has at least two entries. Without loss of generality we
can assume the first row has two entries, which we point
out are both less than one. Assume they are in columns i
and j. Since a1i < 1 there must be an s such that asi �= 0.
Since a1j < 1 there must be a t such that atj �= 0. Now
there are two columns with at least 2 non-zero entries.
Since each column sums to 1 there must be at least one
nonzero entry in each column and we have shown this
matrix must have at least n+ 2 nonzero entries.

20. Let A =

(
a b

c d

)
. Since the matrix is bistochastic,

a+ b = a+ c so that b = c and the matrix is symmetric.
Also b+ d = 1 = a+ b so a = d.

21. Since A is reducible it is permutation similar to a

block matrix of the form
(
A1 Bst

0ts A2

)
where A1 is an

s × s matrix and A2 is a t × t matrix with s + t = n.
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The matrix A1 is column stochastic and the matrix A2 is
row stochastic. Now the sum of each column of A1 is n

and there are s columns so the sum of all the entries in A1

is ns. Since A is row stochastic, each row of A sums to
n. Let the rows of A1 be a12, . . . ,a1s. The sum of the
entries in each a1i is at most n. Suppose some row does
not sum to n. Then the sum of all the entries in all the
rows of A1 sums to less than ns, a contradiction. Thus,
each row of A1 sums to n and A1 is a bistochastic matrix.
Consequently, Bst = 0st and then A2 is bistochastic.

12.4. Location of Eigenvalues

1. Since A is a stochastic matrix, in particular, A is real
matrix. Since A is stochastic, Atr is row stochastic. If
δ = min{aii|1 ≤ i ≤ n} then C ′

i(A) = R′
i(A

tr) ≤ 1−δ

for all i. Suppose z ∈ C and |z − δ| ≤ C ′
i(A) ≤ 1 − δ.

On the other hand, |z − aii| ≤ |z − δ|.

2. This implies that A is strictly diagonally dominant,
consequently, A is invertible.

3. Since Γi(A) ∩ Γj(A) = ∅ for all i �= j it follows from
Theorem (12.26) the eigenvalues of A are distinct and it
follows that A is diagonalizable.

4. By Theorem (12.26) each Γi(A) contains an eigen-
value, whence, no Γi(A) contains two. Now assume
a ∈ R and w,w are complex conjugates. Then |a−w| =
|a−w|. If A has a complex eigenvalue, w, then also w is
an eigenvalue since the characteristic polynomial is real.
Suppose w ∈ Γi(A) so that |w − aii| ≤ R′

i(A). But then
|w−aii| ≤ R′

i(A) and w ∈ Γi(A), a contradiction. Thus,
the eigenvalues of A are all real.

5. Since each of the matrices Q−1AQ is similar to A we
have Spec(Q−1AQ) = Spec(A). Therefore Spec(A) =

Spec(Q−1AQ) ⊂ Γ(Q−1AQ) and, consequently, con-
tained in the intersection of all Γ(Q−1AQ).

6. This is proved just like Exercise 4.

7. Denote the columns of A by c1, . . . , cn. Let I = {i1 <

· · · < ik}. We prove that the sequence (ci1 , . . . , cik)

is linearly independent. Let AI,I be the k × k matrix
whose (s, t)-entry is ais,it . Then AI,I is strictly diag-
onally dominant and therefore by Theorem (12.32) in-
vertible. This implies that the sequence of columns of
AI,I is linear independent which, in turn implies that the
sequence (ci1 , . . . , cik) is linearly independent. Thus,
rank(A) ≥ k.

8. Assume to the contrary that for all i, |aii| ≤ C ′
i(A), we

will obtain a contradiction. Since A is strictly diagonally
dominant it follows that

∑n
i=1 |aii| >

∑n
i=1 R

′
i(A) =∑

i�=j |aij | =
∑n

i=1 C
′
i(A) ≥

∑n
i=1 |aii|, a contradic-

tion.

9. Since multiplying the ith row by -1 changes both the
sign of det(A) and aii we can assume that all aii > 0

and prove that det(A) > 0. The proof is by induction

on n ≥ 2. If A =

(
a11 a12
a21 a22

)
with a11 > |a12| and

a22 > |a21| then det(A) = a11a22 − a21a12 ≥ a11a22 −
|a12||a21| > 0.

Now assume the result is true for all strictly diagonally
dominant (n − 1) × (n − 1) real matrices with positive
diagonal entries and assume that A is an n×n strictly di-
agonally dominant real matrix with positive diagonal en-
tries. Let aij be the (i, j)-entry of A. We add multiples
of the first column to the other columns in order to obtain
zeros in the first row. This does not change the determi-
nant. After performing these operations the entry in the
(i, j)-entry with 1 < i, j is bij = aij − ai1a1j

a11
. We claim

that the (n−1)× (n−1)B matrix with (k, l)-entry equal
to bk+1,l+1 is strictly diagonally dominant with positive
diagonal entries. Now the diagonal entries are

aii −
a1i
a11

ai1 ≥ aii − | a1i
a11

ai1| >

aii − |ai1| > 0

which establishes our second claim. We now must show
that

aii −
a1iai1
a11

>
∑

j≥2,j �=i

|aij −
ai1a1j
a11

|.

We illustrate with i = 2, the other cases follow in exactly
the same way. We thus have to show that
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a22 −
a12a21
a11

>

n∑
j=3

|a2j −
a21a1j
a11

| ≤

n∑
j=3

|a2j |+
n∑

j=3

|a21a1j
a11

|.

It therefore suffices to show that

a22 >

n∑
j=3

|a2j |+
n∑

j=3

|a21a1j
a11

|+ |a12a21
a11

.

Since A is strictly diagonally dominant it suffices to prove
that

∑n
j=2 |

a21a1j

a11
| < |a21|. Now

n∑
j=2

|a21a1j
a11

| =

|a21| ×
1

a11

n∑
j=2

|a1j | < |a21|

since a11 >
∑n

j=2 |a1j |.

Now det(A) = a11det(B). Since B is strictly diagonally
dominant with positive diagonal entries, det(B) > 0 by
the inductive hypothesis. Hence det(A) > 0.

12.5. Functions of Matrices

1i. For any n× n matrices A,B, (Q−1AQ)(Q−1BQ) =

Q−1[AB]Q. Then result follows by a straightforward in-
duction on k.

ii. [Q−1(M1 + M2)]Q = [Q−1M1 + Q−1M2]Q =

[Q−1M1]Q+ [Q1M2]Q = Q−1M1Q+Q−1M2Q.

2. Assume f(x) = a0 + a1x + · · · + amxm. Now
f(B) = a0In+a1B+ · · ·+amBm. Then Q−1f(B)Q =

Q−1[a0In + a1B + · · · + amBm]Q. By repeated appli-
cation of Lemma (12.9) ii. it follows that Q−1f(B)Q =

Q−1(a0In)Q + Q−1(a1B)Q + · · · + Q−1(amBm)Q =

a0In+a1Q
−1BQ+ · · ·+amQ−1BmQ. By (12.9) i, this

is equal to a0Im + a1Q
−1BQ+ · · ·+ am(Q−1BQ)m =

f(Q−1BQ).

3. There exists an invertible matrix Q such that Q−1AQ

is upper triangular. Since exp(Q−1AQ) = Q−1exp(A)Q

we can, without loss of generality, assume that A is upper

triangular. Now if A =




λ1 a12 . . . a1n
0 λ2 . . . a2n
...

... . . .
...

0 0 . . . λn


 then

exp(A) is upper triangular with eλ1 , . . . , eλn on the diag-
onal. Consequently,

χexp(A) = (x− eλ1) . . . (x− exp(λn).

4. It follows from Theorem (12.36) and the defini-
tion of determinant that det(exp(A)) = eλ1 . . . eλn =

eλ1+···+λn = eTrace(A).

5. For an n×n complex matrix we have (An)∗ = (A∗)n.
We also have (A+B)∗ = A∗+B∗. Also for a real scalar
c, (cA)∗ = cA∗. It then follows that if f(x) ∈ R[x] and
A is an n× n complex matrix then f(A)∗ = f(A∗).

Set fn(x) =
∑n

j=0
1
j!x

j . Then fn(A)∗ = fn(A
∗). It then

follows that

exp(A∗) = lim
n→∞

fn(A
∗) = lim

n→∞
fn(A)∗ = exp(A)∗.

6. By Exercise 5, exp(A)∗ = exp(A∗) = exp(A).

7. In general, if AB = BA then exp(A)exp(B) =

exp(A + B) = exp(B + A) = exp(B)exp(A).
In particular, exp(A)exp(A)∗ = exp(A)exp(A∗) =

exp(A + A∗) = exp(A∗ + A) = exp(A∗)exp(A) =

exp(A)∗exp(A).
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Chapter 13

Applications of Linear Algebra

13.1. Least Squares

1. By Lemma (13.1), if X is a {1, 3} inverse of A then
AX = AA†. Conversely, suppose AX = AA†. Then
AXA = AA†A = A by (PI1) for the Moore-Penrose
inverse. Also, (AX)∗ = (AA†)∗ = AA† = AX .

2. Since z = Xb where X is a {1, 3} inverse of A we
have Az = AXb = AA†b which is a least squares solu-
tion to Ax = b. Therefore, if Ay = Az then y is a least
square solution to Ax = b.

3. Since A = BC,A∗ = C∗B∗. Substituting this for A∗

in the normal equation A∗Ax = A∗b we get

C∗B∗Ax = C∗B∗b.

It then follows that C∗(B∗Ax − B∗b) = 0n. However,
since C∗ is an n×r matrix with rank r it must be the case
that B∗Ax − B∗b = 0r which implies that B∗Ax =

B∗b.

4. Clearly the columns of A are not multiple of each
other and consequently, the sequence is linearly in-
dependent. The reduced echelon form of the matrix


1 1 9

1 −3 3

−2 2 −6


 is I3 and therefore b /∈ col(A).

A∗ =

(
1 1 −2

1 −3 2

)
. The matrix version of the normal

equations is

(
1 1 −2

1 −3 2

)


1 1

1 −3

−2 2


x =

(
1 1 −2

1 −3 2

)


9

3

−6


 .

(
6 −6

−6 14

)
x =

(
24

6

)
,

x =

(
31
4
15
4

)
.

5. Clearly the columns of A are not multiples of
each other and consequently, the sequence is linearly
independent. The reduced echelon form of the matrix

1 2 1

1 1 −2

1 3 7


 is I3 so b /∈ col(A).

A∗ =

(
1 1 1

2 1 3

)
so the matrix version of the normal

equations is

(
1 1 1

2 1 3

)

1 2

1 1

3 1


x =

(
1 1 1

2 1 3

)


1

−2

7


 .

(
3 6

6 14

)
x =

(
6

21

)
,

x =

(
−7
9
2

)
.
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126 Chapter 13. Applications of Linear Algebra

6. Clearly the columns of A are not multiple of each other
and consequently, the sequence is linearly independent.

The reduced echelon form of the matrix




1 1 2

1 1 1

1 1 3

1 −1 18




is




1 0 0

0 1 0

0 0 1

0 0 0


 so b /∈ col(A).

A∗ =

(
1 1 1 1

1 1 1 −1

)
. The matrix version of the nor-

mal equations is

(
1 1 1 1

1 1 1 −1

)



1 1

1 1

1 1

1 −1


x =

(
1 1 1 1

1 1 1 −1

)



2

1

3

18


 .

(
4 2

2 4

)
x =

(
24

−12

)
,

x =

(
20

−16

)
.

7. The reduced echelon form of A is




1 0 0

0 1 0

0 0 1

0 0 0


 so the

sequence of columns of A is linearly independent. The re-

duced echelon form of the matrix




1 1 1 1

1 1 1 2

1 1 −1 −1

1 −1 1 4




is I4. Therefore b /∈ col(A). The matrix version of the
normal equations is



1 1 1 1

1 1 1 −1

1 1 −1 1







1 1 1

1 1 1

1 1 −1

1 −1 1


x =



1 1 1 1

1 1 1 −1

1 1 −1 1







1

2

−1

4


 .



4 2 2

2 4 0

2 0 4


x =




6

−2

8


 ,

x =




3
2

− 5
4

5
4


 .

8. The reduced echelon form of the matrix


1 0 1 1

0 1 −1 −1

1 2 0 −1

2 1 3 0


 is




1 0 2 0

0 1 −1 0

0 0 0 1

0 0 0 0


. It fol-

lows that the sequence of columns of A is linearly
dependent and that b /∈ col(A).

The matrix version the normal equations is



6 4 8

4 6 2

8 2 14


x =



−1

−3

3


 .

Set B =




1 0

0 1

1 2

2 1


 , C =

(
1 0 2

0 1 −1

)
. Then A = BC

is full rank decomposition of A. Then A† = C†B†.

B† =

(
3
10 − 1

5 − 1
10

2
5

− 1
5

3
10

2
5 − 1

10

)
,
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13.1. Least Squares 127

C† =




1
3

1
3

1
3

5
3

1
3 − 1

6


.

A† =




1
3

1
30

1
5

1
5

− 1
15

11
60

3
20

1
20

2
15 − 7

60 − 1
10

3
20


 .

Set z = A†b =



− 1

10

− 11
20
7
20


. The general least square solu-

tion is z + y where y ∈ col(I3 −A†A) = Span




2

−1

−1


.

9. The reduced echelon form of (A b) is



1 0 1 1 0

0 1 1 −1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0




.

Thus, b /∈ col(A) and the sequence of columns of A is
linearly dependent.

The matrix version of the normal equations is




4 −1 3 5

−1 4 3 −5

3 3 6 0

5 −5 0 10


x =




6

3

9

3


 .

Let B =




1 0

0 1

1 −1

1 1

−1 1




, C =

(
1 0 1 1

0 1 1 −1

)
. Then

A = BC is a full rank decomposition of A. Then A† =

C†B†.

C† =




1
3 0

0 1
3

1
3

1
3

1
3 − 1

3


. B† =

(
4
15

1
15

1
5

1
3 − 1

5
1
15

4
15 − 1

5
1
3 − 1

5

)
.

A† =




4
45

1
45

1
15

1
9 − 1

15
1
45

4
45 − 1

15
1
9

1
15

1
9

1
9 0 2

9 0
1
15 − 1

15
2
15 0 − 2

15


.

A†A =




1
3 − 1

3
1
3

0 1
3

1
3 0

1
3

1
3

2
3 0

1
3 − 1

3 0 2
3


.

Set z = A†b =




3
5
2
5

1
1
5


. Then the general least square

solution is z+y where y is the column space of I4−A†A

which is equal to Span







1

1

2

0


 ,




1

−1

0

2





.

10.




1 1

2 8

−2 5


 =




1
3 − 2

3
2
3

2
3

− 2
3

1
3




(
3 9

0 3

)
. This leads to

the equation
(
3 9

0 3

)
x =

(
1
3

2
3 − 2

3

− 2
3

2
3

1
3

)


2

7

−5


 .

After performing the multiplication on the right we get

(
3 9

0 3

)
=

(
2

5

)
,

x =

(
−13

3
5
3

)
.

11. Let Q =




1
2

1
2

1
2

1
2

1
2 − 1

2
1
2 − 1

2
1
2

1
2 − 1

2 − 1
2


.

Then A = QR where R =



2 −1 1

0 5 4

0 0 1


. Then R−1 =




1
2

1
10 − 9

10

0 1
5 − 9

5

0 0 1



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128 Chapter 13. Applications of Linear Algebra

The solution is x′ = R−1(Qtrb =




4

1

−2




12. y = 2.06 + 3.01x.

13. y = 3.51− 356x.

14. y = 2.92− 1.88x+ 1.20x2.

15. y = .26 + .87x+ .35x2.

16. y = .35e1.55t.

17. y = 2.53e−.14t.

13.2. Error Correcting Codes

1. For an arbitrary word z = (c1 . . . cn) let spt(z) =

{i|ci �= 0) so that wt(z) = |spt(z)|. For words x and
y we have spt(x + y) ⊂ spt(x) ∪ spt(y) and the result
follows from this.

2. d(x, z) = wt(x − z) = wt([x − y] + [y − z]) ≤
wt(x−y)+wt(y−z) by Theorem (13. 8) (Exercise 1).
By the definition of distance

wt(x− y) + wt(y − z) = d(x,y) + d(yz).

3. Part i. Assume d(w,x) = t where w = (a1 . . . an).
Then x and w differ in exactly t places. There are

(
n
t

)
ways to pick those places. If i is such a place then the ith

component of x is not ai and we have q − 1 choices for
the ith component of x. Thus, the number of such x is(
n
t

)
(q − 1)t.

ii. The closed ball, Br(w) is the disjoint union of
{w, {x|d(w,x) = 1}, . . . , {x|d(w,x) = r}. The result
now follows by part i.

4. For a vector v set φ(v) = v · v. This is a quadratic
form. A self-dual code is a totally singular subspace. If q
is odd then (Fn

q , φ) is non degenerate and the Witt index
is at most �n

2 �. If q is even and n is even then (Fn
q , φ) is

a non degenerate hyperbolic orthogonal space and so has
Witt index n

2 . On the other hand, if q is even and n is odd
then the orthogonal space (Fn

q , φ) is nonsingular: it has
a radical of dimension one (the space spanned by the all
one vector) which is a non-singular vector. In this case
the Witt index is n−1

2 .

5. a) Let z denote the all one vector. Then z ∈ H. The
map x → z+x is a bijection from the collection of words
of length t to words of length 7− t.

b) Since the minimum weight is 3 there are no words of
weight 1 or 2 and by part a) no words of weight 5 or 6.
So the weight of a word in H is in {0, 3, 4, 7}. There is a
single word of weight 0 and weight 7. There are equally
many words of weight 3 and 4 and their total is 14 so there
are 7 of each.

6. The parity check extends 07 to 08 and extends the all
one vector of length 7 to the all one vector of length 8.
Each of the 7 words of weight 4 are extended by adding
a component equal to zero so each of these gives rise to a
word of weight 4. On the other hand each of the 7 words
of weight 3 are extended by adding a component equal to
one so each of these also gives rise to a word of weight 4.
Therefore, in all, there are 14 words of weight four in H.

7. x · x = wt(x) × 1Fq is equal to one of w(x) is odd
and zero if wt(x) is even.

8. x · y = |spt(x) ∩ spt(y)| × 1Fq . Therefore x · y = 0

if spt(x) ∩ spt(y)| has an even number of elements and
is one if |spt(x) ∩ spt(y) is odd.

9. Since wt(x) is even for every word in H it follows
by Exercise 6 that x · x = 0 for every x ∈ H. Clearly if
x = 0 and y is arbitrary then x·y = 0. On the other hand,
since x∩z = x it follows from Exercise 7 that z ·x = 0.
We may therefore assume that wt(x) = wt(y) = 4 and
prove that x · y = 0. By Exercise 7 we need to prove that
|spt(x) ∩ spt(y)| is even. Suppose |spt(x) ∩ spt(y)| =
1. Then wt(x + y) = 6 which contradicts Exercise 5.
Likewise, if |spt(x) ∩ sit(y)| = 3 then wt(x + y) = 2,
again a contradiction.
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13.3. Ranking Web Pages 129

10. Let x,w be code words. Suppose y ∈ B3(w) ∩
B3(x). Then d(w,x) ≤ d(w,y)+ d(y,x) ≤ 3+3 = 6,
a contradiction. Therefore B3(w) ∩ B3(x) = ∅. By part
ii. of Theorem (13.11), |B3(w)| = 1+23+

(
23
2

)
+
(
23
3

)
=

1+23+253+1771 = 2048 = 211. Since C has dimension
12, the number of words in C is 212. Since the balls of
radius 3 centered at the code words are disjoint it follows
that

| ∪w∈C B3(w)| = |C| × |B3(w)| =

212 × 211 = 223 = |F23
2 |.

Thus, {B3(w)|w ∈ C} is a partition of F23
2 .

11. The number of nonzero vectors in Fn is qn− 1. Since
Span(x) contains q − 1 nonzero vectors the number of
one dimensional subspaces of Fn

q is qn−1
q−1 = t. Thus,

there are t columns in the parity check matrix H(n, q) so
the length of the Hamming (n, q)-code is t.

We next claim that rank(H(n, q)) = n. Since there
are n rows it follows that rank(H(n, q)) ≤ n. On
the other hand if X1, . . . , Xn are one dimensional sub-
spaces, X1 + · · · + Xn = Fn

q and Xi = Span(xi) for
1 ≤ i ≤ n then (x1, . . . ,xn) is a basis of Fn

q . Therefore,
rank(H(n, q)) ≥ n. Since the Hamming code is the null
space of H(n, q) we can conclude it has dimension t−n.

We now prove the assertion about the minimum distance.
Since any two columns are linearly independent the min-
imum distance is at least 3. However if X,Y, Z are three
distinct one dimensional subspaces such that X + Y =

X + W = Y + W and X = Span(x), Y = Span(y),
and W = Span(w) then (x,y,w) is linearly dependent.
Consequently, there are words of weight three. Thus, the
minimum weight is exactly three.

It now follows that the balls B1(w) where w is in the
Hamming code are disjoint since the minimum distance
is 3. By Theorem (13.11) the number of vector in such a
ball is 1 + t(q − 1) = 1 + qn−1

q−1 × (q − 1) = qn. Since
there are qt−n code words we get

| ∪w∈Ham(n,q) B1(w)| = |Ham(n, q)| × |B1(w)| =

qt−n × qn = qt.

Thus, {B1(w)|w ∈ Ham(n, q)} is a partition of Ft
q and

Ham(n, q) is a perfect 1-error correcting code.

13.3. Ranking Web Pages

1. The matrix is
(

A 05×4

04×5 B

)
where A =




0 1
2 0 1

2 1
1
3 0 0 0 0

0 1
2 0 0 0

1
3 0 1 0 0
1
3 0 0 1

2 0




and B =




0 1
3 0 0

1 0 1
2 0

0 1
3 0 0

0 1
3

1
2 0


.

2. The last column is a zero column and therefore its en-
tries do not add up to 1.

3. L̂ =

(
A 05×3

1
9j5

04×5 B′ 1
9j4

)
. where j5 is the all one 5-

vector, j4 is the all one 4-vector and B′ =




0 1
3 0

1 0 1
2

0 1
3 0

0 1
3

1
2


.

4. Since Span(e1, e2, e3, e4, e5) is invariant the matrix
is reducible.

5. Span(




12
31
4
31
2
31
6
31
7
31

0

0

0

0




).

K23692_SM_Cover.indd   137 02/06/15   3:13 pm



130 Chapter 13. Applications of Linear Algebra

6.




1
36

29
72

1
36

10
36

28
36

1
36

1
36

1
36

4
36

10
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
9

1
36

29
72

1
36

29
72

1
36

1
36

1
36

1
36

1
9

10
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
9

10
36

1
36

1
36

29
72

1
36

1
36

1
36

1
36

1
9

1
36

1
36

1
36

1
36

1
36

1
36

10
36

1
36

1
9

1
36

1
36

1
36

1
36

1
36

7
9

1
36

29
72

1
9

1
36

1
36

1
36

1
36

1
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