Hernández Lecture 2
Recap:
$$fe K[x_1, ..., x_n]$$

* field (Q, R, C or Z/PZ = Fr)
· V = V(f) = Ea exⁿ: f(a) = OS
* hyporsurfale
Assume Q exⁿ in in V (1.e. f(Q)=O)
arigin
Q: When is V/f singular at O? ~ answered last time
(How singular?) ~ today
 $M = \langle x_1, ..., x_n \rangle = kEx_1, ..., x_n J$
* maximal ideal corres. to Q"
... $\bigcap_{n} m! = ... = m! = ... = M^2 = M^2 = M^2$
 $t = ... = m! = ... = M^2 = M^2 = M^2$
 $f \notin f$
 $f \notin f$
 $f \notin f$
 $f \notin f$
 $f \notin f$
If $f \in m! > lowest monomials are of at least degree t$
 $mult(f) = t > lowest monomial of f is degree t$
 $Ex If $f \in [y^2 - x^3, y^2 - x^5, x^2 + y^4 - Z^2] \Rightarrow mult(f) = Q$$

Ex If f € Ey ² -x ³ , y ² -x ⁵ , x ² +y ² -Z ² J ⇒ muH(f)=2 K H L (+ighler) (+ighler) mult doesn't distinguish between these 2 singularities. So let's explore better ways
L Satisfies · in (0, 1] 1 D mult(f)
-=1 when f is nonsingular (>>)
· "worse singularities" +> "smaller values"
this associates a # to shape but we could also assoc. an ideal & cook at how "complicated" it is
12/pZ=IE
· differentiation · Frobenius map no longer have Call · integration · Frobenius map no longer have Call
use singularitio
Goal: Introduce Frobenius & use it to distinguish Singularities take $p \rightarrow \infty \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\cdot f \in \mathbb{F} [X,, X_n] = \mathbb{R}$

 $f \in \mathbb{F}_{0} L X_{1}, ..., X_{n} J = R$ $0 \le i \le p$ $\binom{P}{i} = \frac{P!}{i!(p-i)!} \equiv 0 \mod p$ if $0 \le i \le p$ (p on numerator (pon numerator wont get canceled) $\Rightarrow g_i h \in R \Rightarrow (g + h)^r = \sum_{i=0}^{r} {\binom{p}{i}} g^i h^{p-2} \qquad (Binomial)$ $\rightarrow = g^p + h^p$ great consequence of this fact $F: R \rightarrow R \quad defined \quad by \quad F(g) = g^{p} \quad Frobenius \quad map/endomorph \\ p^{th} power \quad map \quad (morph from (morph fro$ · $F(g+h) = F(g) + F(h) \xrightarrow{s} Ring hom.$ · F(gh) = F(g) F(h)R F(R) = R subring njective b/c in a domain (canit have g"=0) b forced to be onto The Frobenius map is an iso. onto its image! So we have an iso. from R to a subring of R that's iso to R (heading to fractals) $geR \Rightarrow g = \sum \alpha_n x^n$ $U = (U_1, ..., U_n)$ $X^{u} = X_1^{u_1} X_2^{u_2} ... X_n^{u_n}$ (finite sum) in the $\Rightarrow g^{P} = \left(\sum_{i} \alpha_{i} x^{u} \right)^{P} = \sum_{i} \alpha_{i} x^{P} = \sum_{i} \alpha_{i} x^{P} = \sum_{i} \alpha_{i} x^{P} = \sum_{i} \alpha_{i} (x_{i}^{Pu} \cdot x_{n}^{Pu})$ ε Ε [X,^e,..., x^e]

Fernalts
$$c = F_{p}[x_{1}^{e}, ..., x_{n}^{e}]$$

Thus our $r = F_{p}[r_{n}]$ is $F_{p}[x_{1}, ..., x_{n}] \xrightarrow{l}{\rightarrow} F_{p}[x_{1}^{e}, ..., x_{n}^{e}] \xrightarrow{l}{} F_{p}[x_{1}, ..., x_{n}]$
Thus our $r = F_{p}[r_{n}]$ is $F_{p}[x_{1}, ..., x_{n}] \xrightarrow{l}{\rightarrow} F_{p}[x_{1}^{e}, ..., x_{n}] \xrightarrow{l}{} F_{p}[x_{1}, ..., x_{n}]$
Examine $f_{p}[x_{1}^{e}, ..., x_{n}^{e}] \xrightarrow{l}{=} f_{p}[x_{1}]$ (analogous how $R \in C$ where C is
 $n = 1$ case] $F_{p}[x_{1}^{e}] \xrightarrow{l}{=} f_{p}[x_{1}]$ (analogous how $R \in C$ where C is
 $n = 1$ case] $F_{p}[x_{1}^{e}] \xrightarrow{l}{=} f_{p}[x_{1}]$
Apply Division Algorithm: $i = s_{i}p + r_{i}$, $s_{i}, r_{i} \in N$, $o \in r_{i} \sim p$
 $= \int_{1}^{n} x_{i}(x^{e})^{s_{i}}x^{r_{i}}$
Gather all possible remainders $r_{a}, ..., r_{N}$
 $g = \int_{1}^{n} \alpha(x^{e})^{s_{i}}x^{r_{i}}$
 $n = F_{p}[x^{e}]$
 $n = F_{p}[x^{e}]$
 $p = G (x^{e})^{s_{i}}x^{r_{i}}$
 $n = F_{p}[x^{e}]$
 $p = f_{n}[x^{e}]$ incar combo of $h x_{i} \dots x^{p-1}$
 $p = bcasis for F_{p}[x]$ over $F_{p}[x^{e}]$
 $n = F_{p}[x^{e}]$
 $n = F_{p}[x^{e}]$
 $n = F_{p}[x^{e}]$
 $f_{p}[x^{e}] = f_{p}[x]$
 $f_{p}[x^{e}] = f_{p}[x]$

 $\mathbb{F}_{p}[\underline{X}^{p}] \leq \mathbb{F}_{p}[\underline{X}]$ very nice ext. of rings also has its own Frotenius ⇒ ... ≤ IFp [x^{p²}] ⊆ IFp [x¹] = IFp [x] Frobenius fractal each containment are all iso & Zooming in & see $\cdots \leq R^{p^{s}} \leq R^{p^{2}} \leq R^{p} \leq R$ an 150.06j. $\cdots = S^{p^2} \subseteq S^{p^2} \subseteq S$ Self-similar chain of rings (an we go to the right? Yes. IF [x] = IF [x"] W (worksheet) IF [x] = IF [x] = IFp[x] t-x e IF [x] = IFp[x] need to show x to is!