MIDTERM 02 CONCEPTUAL REVIEW

EXAM DETAILS

Length 5-6 problems, many of which may have multiple parts.

- Material All topics covered so far this semester.
 - Aids Both sides of one standard-sized $(3 \times 5 \text{ inch})$ notecard is allowed, but <u>no calculators are allowed</u>.
- <u>Note</u>: Problems from FIS appear in **blue** and quizzes appear in **red**.

BASICS REGARDING LINEAR TRANSFORMATIONS

- (1) What is the definition of a linear transformation $T : V \rightarrow W$? Can you verify whether a particular function is linear? 2.1: 2, 3, 4, 5, 8, 9 Quiz 4
- (2) What is the definition of the kernel and range of a linear transformation?
- (3) How is ker(T) related to the property of T being 1-1?
- (4) How is R(T) related to the property of T being onto?
- (5) How are kernels and ranges related to subspaces?
- (6) Given a linear transformation T, how does one compute its kernel? 2.1: 2, 3, 4, 5
- (7) Similarly, given a linear transformation T, how does one compute its range? Even further, how does one compute a basis for its range? **2.1: 2, 3, 4, 5**
- (8) What is the extrapolation principle? Can you use it to determine the values of linear transformations at particular inputs? Can you use it to determine if a particular linear transformation is 1-1 or onto? 2.1: 10, 11, 12 Quiz 6

RANK-NULLITY THEOREM, AND APPLICATIONS

- (1) What is the precise statement of the Rank-Nullity Theorem?
- (2) Can you apply this theorem to determine if a given linear transformation is 1-1? Quiz 5 2.1: 2, 3, 4, 5, 10
- (3) Can you apply this theorem to determine if a given linear transformation is onto? Quiz 5 2.1: 2, 3, 4, 5

LINEAR TRANSFORMATIONS AND MATRICES

Given a linear transformation T : V → W and ordered bases β for V and γ for W, what is the definition of the matrix [T]^γ_β?
2.2: 2, 3, 4, 5 Quiz 6

- (2) What does composition of linear transformations correspond to for matrices? How does this simplify describing the composition of linear transformations? 2.3: 3a
- (3) Can you produce an explicit formula for T from the matrix $[T]^{\gamma}_{\beta}$? To be emphasized during the last lecture before Midterm 02
- (4) If T is invertible, then what is the inverse of the matrix $[\mathsf{T}]^{\gamma}_{\beta}$? If $\mathsf{T}: \mathsf{V} \to \mathsf{W}$ is an isomorphism and $\dim(\mathsf{V}) = \dim(\mathsf{W}) = 2$, then can you use the inverse of the matrix $[T]^{\gamma}_{\beta}$ to give an explicit formula for T^{-1} ? **2.4:** 1a To be emphasized during the last lecture before Midterm 02

2