
Worksheet: The Spectrum of a Ring and the Zariski Topology

Throughout this worksheet, R denotes an arbitrary ring; recall that in this course, this means
that R is commutative and contains 1.

Definition. The spectrum of R, denoted, SpecR, is the set of all prime ideals of R.

Notation. For any subset A ⊆ R, define V(A) = {P ∈ SpecR | A ⊆ P}.

1. Warm-up.

(a) Describe Spec k, where k is a field.

(b) For arbitrary R, compute V({0}) and V({1}).
(c) If I is an ideal of R, explain why one can identify V(I) ⊆ SpecR with Spec(R/I).

(d) Explain why SpecR has a natural structure of a poset. Describe this poset for SpecZ.

2. The Zariski topology.

(a) For A ⊆ R, explain why V(A) = V(I), where I is the ideal generated by A. If I ⊆ J
are ideals of R, then how does V(I) compare to V(J)?

(b) Given ideals I and J of R, write V(I)∩V(J) and V(I)∪V(J) in terms of closed sets of
the form V(a), where a is an ideal of R.
Hint: For the final part, determine inclusions among the set V(I) ∪V(J), V(I ∩ J), and
V(IJ). Then show that they must coincide.

(c) Prove that SpecR has the structure of a topological space, whose closed sets are those
of the form V(A) for A ⊆ R, which by (a), can also be described as the sets of the form
V(I) for ideals I of R. This is called the Zariski topology on SpecR.
Hint: Recall that the open sets of a topological space must satisfy the following axioms:
(1) The empty set is open, (2) Any (possibly infinite) union of open sets is open, and (3)
Any finite intersection of open sets is open. Rephrase these axioms in terms of closed
sets, which, by definition, are complements of open sets.

3. (a) Describe the closure of a subset Σ of SpecR, the smallest closed set containing Σ.

(b) What is the closure of {0} in SpecZ? Describe why your answer means that the prime
ideal 0 is a dense point of SpecZ. Then find the closure of {P} for all other prime ideals
P of Z.

(c) Sketch the topological space SpecZ using your observations from (b). (Be creative!)

(d) Show that for nonempty A ⊆ Z, V(A) = V({n}), where n is the greatest common
divisor among all elements of A.

(e) Let maxSpecR denote the subset of SpecR consisting of maximal ideals. Prove that the
subspace topology on maxSpecZ is the finite complement topology.

4. Describe the points of SpecC[x], and then sketch this spectrum. What is maxSpecC[x]?
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5. Describe, and then sketch, SpecR[x].

6. Map on spectra induced by a ring map. Let ϕ : R → S be a ring homomorphism.

(a) Prove that if P ∈ SpecS, then ϕ−1(P ) ∈ SpecR.

(b) Prove that the function ϕ# : SpecS → SpecR sending P to ϕ−1(P ) is continuous in the
Zariski topology.

(c) For the ring map Z → Z/2Z sending each integer to its residue class modulo 2, describe
the induced map on spectra explicitly.

(d) For the ring map Z ↪→ Q, describe the induced map on spectra explicitly.

7. Suppose that P ∈ SpecZ[x].

(a) Describe the possible values of P ∩ Z, and describe these possibilities in terms of the
induced map SpecZ[x] → SpecZ. There should be two cases.

(b) Describe the elements of SpecZ[x].
Hint: Break the problem into the two cases above. In each case, consider the image of P
under a natural ring map Z[x] → k[x], where k is a certain field. Recall Gauss’ Lemma.

(c) Sketch SpecZ[x].

8. Basic open sets. For f ∈ R, define D(f) = {P ∈ SpecR | f /∈ P}.

(a) Prove that D(f) is an open set of SpecR.

(b) Prove that the open sets of the form D(f) form a basis for the Zariski topology on
SpecR–i.e., this is a collection of open sets for which every open set is a union of some
elements from this collection.

(c) For any ideal I of R, prove that V(I) = ∅ if and only if 1 ∈ I .

9. Challenge. Describe SpecC[x, y] andmaxSpecC[x, y]. (Feel free to ask me for hints!) Extended
Hint: What follows is a rough outline; you may need to modify it, and/or consider isolated
special cases. Realize that the action lies in describing the prime ideals P that are nonzero and
not principal. For such P , explain why there must exist irreducible polynomials f, g ∈ P that
are relatively prime. Remind yourself of the statement of Gauss’ Lemma, which you probably
already did in solving Problem 7. Apply this to f and g, considered as elements of C(x)[y],
where C(x) is the the fraction field of C[x]. Remind yourself of the meaning of the term
Bezout’s Identity. Invoke it, and clear denominators, to obtain a nonzero element in C[x] ∩ P
and then consider its factors. Conclude by applying symmetry.
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