Worksheet: A Module Over a Ring

Throughout, R is an arbitrary ring (commutative with unity), and k is a field.

Definition. An R-module M is an abelian group (M, +) with a function $R \times M \to M$, whose image, for $r \in R$ and $u \in M$, is denoted $r \cdot m$, such that for all $r, s \in R$ and $u, v \in M$, the following properties hold.

- 1. $r \cdot (u+v) = r \cdot u + r \cdot v$.
- $2. (r+s) \cdot u = r \cdot u + s \cdot u.$
- 3. $(rs) \cdot u = r \cdot (s \cdot u)$.
- 4. $1 \cdot u = u$.

We often refer to the map $R \times M \to M$ as scalar multiplication or the action of R on M, and the dot representing this action is often suppressed.

Definition. A *submodule* of an R-module M is a subgroup N of M under addition that is closed under the action of the ring, i.e., $ru \in N$ for all $r \in R$ and $u \in M$.

1. Warm-up.

- (a) Let M be an abelian group, and let S denote the set of all group homomorphisms from M to itself. Check that S is a ring (though it is usually noncommutative). Verify that the existence of a ring homomorphism $R \to S$ is equivalent to the existence of an R-module structure on M.
- (b) Show that M = R is naturally an R-module under the action given by the multiplication of ring elements. What are the R -submodules of R?
- (c) We are very familiar with the notion of a k-module. What do we usually call these objects? What about their submodules?
- (d) Let G be any abelian group. Given $x \in G$ and an integer n, define an action of \mathbb{Z} on G by $n \cdot x = \underbrace{x + x + \dots + x}_{n \text{ terms}}$ if $n \geq 0$, and $n \cdot x = \underbrace{-x x \dots x}_{-n \text{ terms}}$ if n < 0. Verify that

this makes G a \mathbb{Z} -module, and this is the *only* operation $\mathbb{Z} \times G \to G$ for which G an \mathbb{Z} -module. What are the submodules of G?

- 2. **Restriction of scalars.** Show that if $\varphi:S\to R$ is a ring homomorphism and M is an R-module, then the action of S on M given by $s\cdot u=\varphi(s)\cdot u$ makes M an S-module. In particular, if S is a subring of R, and M is an R-module, then M is also an S-module under the same action.
- 3. Characterize the k[x]-modules, and then use your answer to explain why the same abelian group can have more than one R-module structure. Finally, describe the submodules of a given k[x]-module.

Hint: What does restriction of scalars tell us about any k[x]-module? How does a polynomial p(x) over k act on an element of the module in terms of the action of x?

Definition. A function $\varphi: M \to N$ between R-modules M and N is called an R-module homomorphism if for all $u, v \in M$ and $r \in R$,

- (a) $\varphi(u+v)=\varphi(u)+\varphi(v)$, i.e., φ is a group homomorphism, and
- (b) $\varphi(ru) = r\varphi(u)$, i.e., φ is R-linear.

An R-module isomorphism is an R-module homomorphism that is both injective and surjective, and we call two R-modules isomorphic as R-modules if there exists an R-module isomorphism between them.

The set of all R-module homomorphisms from M to N is denoted $\operatorname{Hom}_R(M,N)$. If N=M, φ is also called an *endomorphism* of M, and we often us $\operatorname{End}_R(M)$ to denote $\operatorname{Hom}_R(M,M)$.

- 4. What are k-module and \mathbb{Z} -module homomorphisms usually called? Then verify that over an arbitrary ring, the kernel $\ker \varphi = \{u \in M \mid \varphi(u) = 0\}$ and the image $\varphi(M)$ are R-submodules of M and of N, respectively.
- 5. Identify the natural action of R on $\operatorname{Hom}_R(M,N)$ that makes it an R-module.
- 6. Determine, with justification, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Q})$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$.

Definition. Given R-modules M and N, the (external) direct sum $M \oplus N$ of M and N is the set of coordinate pairs (u,v) for which $u \in M$ and $v \in N$. Addition and scalar multiplication are defined on $M \oplus N$ coordinate-wise, i.e., (u,v)+(u',v')=(u+u',v+v') and $r \cdot (u,v)=(ru,rv)$, for $u,u' \in M$, $v,v' \in N$, and $r \in R$.

More generally, given an arbitrary family of R-modules $\{M_i\}_{i\in I}$ indexed by a (possibly infinite) set I, the direct product $\Pi_{i\in I}M_i$ is the set of coordinate tuples $(u_i)_{i\in I}$ such that $u_i\in M_i$ for each $i\in I$, under coordinate-wise addition and scalar multiplication.

The (external) direct sum $\bigoplus_{i \in I} M_i$ is the subset of this direct product consisting of $(u_i)_{i \in I}$ for which all but finitely many coordinates $u_i = 0$.

- 7. Check that $M \oplus N$ is an R-module, and then do the same for $\bigoplus_{i \in I} M_i$.
- 8. Suppose that M, N, and P are R-modules. Show that as R-modules, $\operatorname{Hom}_R(M \oplus N, P) \cong \operatorname{Hom}_R(M, P) \oplus \operatorname{Hom}_R(N, P)$ and $\operatorname{Hom}_R(M, N \oplus P) \cong \operatorname{Hom}_R(M, N) \oplus \operatorname{Hom}_R(M, P)$.
- 9. Investigate what happens for direct sums and products over arbitrary (possibly infinite) index sets. In particular, describe $\operatorname{Hom}_R(\oplus_I M_i, N)$ and $\operatorname{Hom}_R(M, \Pi_I N_i)$ for arbitrary index sets I.

Definition. Suppose that M and N are submodules of an R-module P. We say that P is the (internal) direct sum of M and N if every element of P can be written uniquely as the sum of an element of M and an element of N.

An R-module P is the (internal) direct sum of a family of R-submodules $\{M_i\}_{i\in I}$ if every element of P can be written uniquely as a sum of elements in the M_i , where only finitely many are nonzero.

10. Prove that $M \oplus N$ is the internal direct sum of its submodules $M \oplus 0$ and $0 \oplus N$.