Throughout, R is an arbitrary ring (commutative with unity), M is an R-module, and k is a field.

Definition. We say that M is generated by subset $\mathcal{A} \subseteq M$ if every element of M can be expressed as an R-linear combination of elements of \mathcal{A} . We call M finitely generated if it is generated by a finite set.

Definition. We call M a *free module* if there exists a set \mathcal{A} of M that generates M, and is also R-linearly independent. In this case, we call the set \mathcal{A} a *free basis* for M.

- 1. Warm-up. In each case, verify that *M* has a natural *R*-module structure. Then find a minimal generating set for *M*. Determine if *M* is finitely generated and/or free, and in the latter case, specify at least two free bases which, if possible, do not differ by units.
 - (a) $M = I = \langle a \rangle$, for $a \in R$.

(b)
$$M = R[x]$$

- (c) $M = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ over $R = \mathbb{Z}$.
- (d) $M = \mathbf{k}[x]/\langle x^2 + 1 \rangle$ over $R = \mathbf{k}$.
- (e) $M = \mathbf{k}[x]/\langle x^2 + 1 \rangle$ over $R = \mathbf{k}[x]$.
- (f) $M = R^n$, where $R^n = \underbrace{R \oplus \cdots \oplus R}_{n \text{ copies}} \cong \underbrace{R \times \cdots \times R}_{n \text{ copies}}$.
- (g) $M = \bigoplus_{i \in \mathbb{N}} R = R \oplus R \oplus R \oplus \cdots$.
- 2. Prove that M a free module if and only if it is a direct sum of some number of copies of R, i.e., $M \cong \bigoplus_{i \in \Sigma} R$ for some index set Σ .

Definition. If N is an R-submodule of M, then the abelian group M/N is called the *quotient* of M by N.

- 3. Verify that M/N inherits a natural R-module structure.
- 4. Prove that M is finitely generated if and only if it is a quotient module of \mathbb{R}^n for some $n \in \mathbb{N}$.
- 5. Recall that every *R*-module is an additive abelian group. Recall the isomorphism theorems for groups, and use these to formulate analogous *isomorphism theorems for modules*. Sketch proofs of these theorems.

Hint: This amounts to verifying that the isomorphims for groups are *R*-linear.

Definition. An *R*-algebra is a ring *S* with a ring homomorphism $\alpha : R \to S$. We call α the structure homomorphism of the *R*-algebra *S*, but we often simply refer to *S* as an *R*-algebra without specifying its structure homomorphism.

6. Briefly verify that, with notation as above, S as an R-module under the action given by $r \cdot s = \alpha(r)s$ for all $r \in R$ and $s \in S$.

Definition. A ring homomorphism $\alpha : R \to S$ is called *module finite* if the *R*-algebra *S* is a finitely generated *R*-module via α . In this case, we call *S* a *module finite R-algebra*, and if α is an injection, then we call α a *module-finite extension of rings*.

7. In each of the following cases, identify a natural *R*-algebra structure $\alpha : R \to S$ with α injective. Then determine whether *S* is a module finite extension of *R*, and whether *S* is free.

(a)
$$R = \mathbb{Q}[x]$$
 and $S = \mathbb{Q}[x, y, z]$.

(b)
$$R = \mathbb{Q}[x, y]$$
 and $S = \mathbb{Q}[x, y, z]/\langle z^2 - xy \rangle$

- (c) $R = \mathbb{Q}[x, z]$ and $S = \mathbb{Q}[x, y, z]/\langle z^2 xy \rangle$.
- (d) $R = \mathbb{Q}[x]$ and $S = \mathbb{Q}[x, y]/\langle xy \rangle$.