Worksheet: Universal Properties and the Tensor Product

Throughout, R is an arbitrary ring (commutative with unity).

- 1. Warm-up: Quotients of rings. Fix an ideal I of R, and consider the natural surjective ring homomorphism $\eta : R \to R/I$ given by $r \mapsto r + I$.
 - (a) Suppose that *T* is a ring, and $\phi : R \to T$ is a ring homomorphism for which $I \subseteq \ker \phi$. Prove that there exists *unique* (well defined) ring map $\psi : R/I \to T$ for which following diagram commutes, i.e., $\psi \circ \eta = \phi$.



This is sometimes expressed in words by saying that ϕ factors uniquely through η .

(b) Now suppose that S is a ring and π : R → S is a ring map for which I ⊆ ker π. Assume that for any ring map φ : R → T for which I ⊆ ker φ, there exists a *unique* ring map ψ : S → T making the following diagram commute.

Prove that S is isomorphic to the ring R/I; in other words, R/I is the *unique* ring (up to isomorphism) satisfying the "universal property" you proved that it satisfies in (a). *Hint*: Your argument should feel pretty general. The uniqueness of ψ is important.

- 2. Quotients via universal properties. Suppose that N is an R-submodule of an R-module M. Call an R-module Q a *candidate quotient* if there exists a map $\pi : M \to Q$ with N contained in the kernel of π , and such that for any other map of R-modules $\phi : M \to L$ with N contained in the kernel of ϕ , there exists a *unique* R-linear map $\psi : Q \to L$ such that $\phi = \psi \circ \pi$.
 - (a) Draw a commutative diagram that illustrates this condition.
 - (b) Prove that any two candidate quotients must be isomorphic as *R*-modules. *Hint*: The *uniqueness* part of the universal property is important.
 - (c) Verify that the explicitly defined R-module quotient M/N is a candidate quotient.
- Direct sums via universal properties. Consider a sequence {M_i}_{i∈Σ} of R-modules indexed by some set Σ. We call an R-module D a candidate direct sum if there exists a sequence of Rlinear maps {α_i : M_i → D}_{i∈Σ} such that for any R-module N and sequence of R-linear maps {β_i : M_i → N}, there exists a unique R-linear map β : D → N such that β_i = β ∘ α_i for all i ∈ Σ.
 - (a) Draw commutative diagram(s) that illustrate this condition.

- (b) Prove that any two candidate direct sums must be isomorphic as *R*-modules. *Hint*: Your argument should feel familiar.
- (c) Verify that the explicitly defined $R\text{-module}\bigoplus_{i\in\Sigma}M_i$ is a candidate direct sum.
- (d) What does this say about how to define maps from direct sums? In other words, how are $\{\operatorname{Hom}_R(M_i, N)\}_{i \in \Sigma}$ and $\operatorname{Hom}_R(\bigoplus_{i \in \Sigma} M_i, N)$ related when N is an arbitrary *R*-module?
- 4. Direct products via universal properties. Consider a set $\{M_i\}_{i \in \Sigma}$ of *R*-modules.
 - (a) Formulate what it means for an *R*-module *P* to be a *candidate direct product*. *Hint*: Think about "projection" maps.
 - (b) Draw some diagrams that illustrate this condition.
 - (c) Verify that the explicitly defined *R*-module $\prod_{i \in \Sigma} M_i$ is a candidate product.
 - (d) Prove that any two candidate direct products must be isomorphic as *R*-modules. *Hint*: This might feel just a little bit different.
 - (e) What does this say about how to define maps to products? In other words, when N is an arbitrary R-module, how are $\{\operatorname{Hom}_R(N, M_i)\}_{i \in \Sigma}$ and $\operatorname{Hom}_R(N, \prod_{i \in \Sigma} M_i)$ related?
- 5. Tensor products via universal properties. Consider *R*-modules *M* and *N*. We call *T* a *candidate tensor product* of *M* and *N* if there exists an *R*-bilinear map $\rho : M \times N \to T$, and every other *R*-bilinear map $M \times N \to L$ factors *uniquely* through ρ by an *R*-linear map. Prove that any two candidate tensor products must be isomorphic as *R*-modules.
- 6. **Explicit construction of tensor products.** We will now show that a candidate tensor product exists by explicitly constructing one.¹
 - (a) Given an arbitrary set Σ, the free *R*-module on the set Σ is just the direct sum ⊕_{i∈Σ}*R*. For conceptual purposes, it is often convenient to use different notation to express elements in this direct sum. Indeed, for every element *j* ∈ Σ, use the same symbol *j* to denote the sequence (*r_i*)_{*i*∈Σ} defined by *r_i* = 0 if *i* ≠ *j* and *r_i* = 1 if *i* = *j*. That is, we use *j* to denote the sequence in ⊕_{*i*∈Σ}*R* whose terms are all zero except for the *j*-th term, which is 1. Convince yourself that with this abuse of notation, we have that

$$(r_i)_{i\in\Sigma} = \sum_{i\in\Sigma} r_i \cdot i.$$

In other words, we may think about the free R-module on the set Σ as all *formal linear combinations* of the elements of Σ with coefficients in R. How do you add such formal linear combinations? How do you multiply one by an element of R? To make things especially concrete, recall that R[x] is the free R-module on the set $\Sigma = \{1, x, x^2, \ldots\}$.

¹Note from your instructor. This construction is pretty involved, but fortunately, almost no one uses it to prove anything. For instance, imagine trying to determine whether a simple tensor $m \otimes n$ is zero. Using the construction, you'd need to check whether (m, n) was in the submodule G, which seems pretty hard. But, what if you could find an R-module L and an R-bilinear map $M \times N \to L$ that sent that particular pair (m, n) to something nonzero? Then, using the universal property, you'd get an R-linear map $M \otimes N \to L$ sending $m \otimes n$ to something nonzero, and hence, $m \otimes n$ must so be nonzero as well! Hopefully, you will get to solve a lot of problems that force you to practice this.

- (b) Sanity check: Let M, N be two R modules, and consider the set Σ = M × N. Observe that the symbols r · (m, n), (rm, rn), (m, n) + (m', n), and (m + m', n) make sense in both F, the free R-module on the set Σ, and also in M ⊕ N. Compare and contrast these elements in each of these contexts.
- (c) We are now prepared to construct the tensor product $M \otimes_R N$ of M and N. Let F be the free R-module on the set $M \times N$, and let G be the submodule of F generated by

$$(m + m', n) - (m, n) - (m', n)$$

(m, n + n') - (m, n) - (m, n')
r \cdot (m, n) - (rm, n)
r \cdot (m, n) - (m, rn)

where $m, m' \in M, n, n' \in N$, and $r \in R$ are arbitrary. Define $M \otimes_R N$ to be the *R*-module

$$M \otimes_R N = F/G$$

and for every $m \in M$ and $n \in N$, let $m \otimes_R n$ (we drop the subscript when there is no room for confusion) denote the class of (m, n) in $M \otimes_R N$. We call $m \otimes n$ a simple tensor. What does the fact that all of the terms displayed above say about how to add simple tensors, and multiply them by a ring element? What role do simple tensors play in $M \otimes N$, say in terms of *R*-module generators?

(d) Verify that $M \otimes N$ is a candidate tensor product, in the sense considered earlier.

Hint: The universal properties for direct sums and quotients may be useful. The point is that to construct a map from $M \otimes N$, you'll need to construct a map on the quotient of a free module.