
Worksheet: Localization of Rings

Throughout, R is an arbitrary commutative ring with unity. Recall that a subset W of R is
multiplicatively closed if it is closed under products and contains 1.

Definition. Given a multiplicatively closed subset W of R, the localization of R at W is a ring1,
denoted W−1R, having the following universal property: For all ring homomorphisms φ : R → S
such that φ(W) consists of units in S, ϕ factors uniquely, as a ring map, through R → W−1R. The
ring W−1R and the homomorphism R → W−1R are unique up to unique isomorphism.

Concretely: The localization W−1R is the set of equivalence classes r
w

of pairs (r, w) ∈ R × W
under the following equivalence relation:

(r1, w1) ∼ (r2, w2) if there exists w ∈ W such that w(r1w2 − r2w1) = 0.

1. Warm-up.
(a) Describe what it means for an algebraic structure to be unique up to unique isomorphism.

(b) What is the ring structure on W−1R and why is it well defined? Describe the maps in the
above factorization explicitly and understand why they are uniquely determined.

(c) Discuss good ways to understand W−1R explicitly in the following cases:
i. R = Z and W = Z \ {0}.

ii. R is any domain and W = R \ {0}.
iii. R = Z and W = {2n | n ≥ 0}.
iv. R = Z and W = Z \ 2Z.
v. R = Z/12Z and W = {1, 2, 4, 8}.

vi. For a fixed integer n ̸= 0, R = Z[x]/⟨nx− 1⟩ and W = {nk | k ≥ 0}.

(d) Explain how to think of W−1R as a quotient of the polynomial ring R[{Xw}w∈W}].

2. The kernel of localization.
(a) Characterize when localization R → W−1R is injective in terms of W .

(b) If W ⊆ R is multiplicatively closed, define I = {r ∈ R | rw = 0 for some w ∈ W}. Prove
that the localization map R → W−1R factors through the quotient map R → R/I .

(c) Examine what this says about the example in Problem 1(b)v.

Definition. Let φ : R → S be a ring homomorphism. The contraction (to R) of an ideal J of S,
denoted J ∩R, is the ideal φ−1(J) of R. The expansion (to S) of an ideal I of R, denoted IS, is the
ideal of S generated by φ(I).

3. Contraction and expansion.
(a) Show that (J ∩R)S ⊆ J for all ideals J of S.

(b) Show that I ⊆ (IS) ∩R for all ideals I of R.

(c) Give an example of a ring map R → S and a prime P of R such that PS is not prime.

1Or more precisely, a ring homomorphism R → W−1R
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(d) Given P ∈ SpecR and W ⊆ R multiplicatively closed, suppose that P ∩W = ∅. Prove that
the expansion P (W−1R) is prime. What happens if P ∩W ̸= ∅?

Definition. A ring is local if it has a unique maximal ideal.

4. The spectrum of a localization. Let W ⊆ R be multiplicatively closed.

(a) Show that SpecW−1R is homeomorphic to {P ∈ SpecR | P ∩W = ∅} with the subspace
topology.
Hint: The maps are given by contraction and expansion.

(b) Given f ∈ R, Rf denotes the localization of R at the multiplicatively closed set of positive
powers of f . Prove that SpecRf is homeomorphic to the complement, D(f), of V(f) in
SpecR.

(c) For P ∈ SpecR, recall that W = R \ P is multiplicatively closed. Prove that in this case,
W−1R is a local ring. We call this ring the localization of R at P , and denote it RP .

5. Fields determined by prime ideals. Given P ∈ SpecR, there are two natural ways to con-
struct a field. The first is to take the fraction field of the domain R/P . The second way is to take
the quotient of the local ring RP by its unique maximal ideal, which we denote k(P ). Prove
that these two natural fields constructed from P are isomorphic by constructing an explicit
isomorphism between them. Make certain to verify that your maps are well-defined!

Definition. Recall that the radical of an ideal I of R is
√
I = {f ∈ R | fn ∈ I for some n ≥ 1}.

When I = 0 is the zero ideal, we call
√
I =

√
0 the nilradical of R, and sometimes denote it Nil(R).

Definition. Recall that a nonzero element of a ring is nilpotent if some positive power of it is zero.
A ring is called reduced if it contains no nilpotent elements.

6. Radicals, nilradicals, and nilpotents in terms of prime ideals.
(a) Prove that f ∈ R is nilpotent if and only if f is contained in every prime ideal of R.

Hint: If f is not nilpotent, then what does this say about Rf? You might want to call upon
the fact that every nonzero ring contains a maximal ideal.

(b) Conclude that
Nil(R) =

⋂
P∈SpecR

P =
⋂

P∈minSpecR

P

where minSpecR ⊆ SpecR is the set of primes that are minimal with respect to inclusion.

(c) Conclude that for any ideal I of R,
√
I =

⋂
P∈V(I)

P .

Hint: What is the expansion of
√
I in R/I?
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