Worksheet: Localization of Rings

Throughout, R is an arbitrary commutative ring with unity. Recall that a subset W of R is
multiplicatively closed if it is closed under products and contains 1.

Definition. Given a multiplicatively closed subset W of R, the localization of R at WV is a ring’,
denoted W™! R, having the following universal property: For all ring homomorphisms ¢ : R — S
such that (W) consists of units in S, ¢ factors uniquely, as a ring map, through R — W~'R. The
ring W™! R and the homomorphism R — W~ R are unique up to unique isomorphism.

Concretely: The localization W' R is the set of equivalence classes ~ of pairs (r,w) € R x W
under the following equivalence relation:

(r1,wy) ~ (re,ws) if there exists w € W such that w(riwy — rewy) = 0.

1. Warm-up.
(a) Describe what it means for an algebraic structure to be unique up to unique isomorphism.

(b) What is the ring structure on W' R and why is it well defined? Describe the maps in the
above factorization explicitly and understand why they are uniquely determined.

(c) Discuss good ways to understand YW~! R explicitly in the following cases:
i R=Zand W =17\ {0}.
ii. Risanydomainand W = R\ {0}.
iii. R=ZandW = {2" | n > 0}.
ivv R=Zand W =7\ 2Z.
v. R=7/12Zand W = {1,2,4,8]}.
vi. For a fixed integer n # 0, R = Z[z]/{(nx — 1) and W = {n* | k > 0}.
(d) Explain how to think of W™ R as a quotient of the polynomial ring R[{ X, }wew}.

2. The kernel of localization.
(a) Characterize when localization R — WW~!R is injective in terms of W.

(b) If W C R is multiplicatively closed, define I = {r € R | rw = 0 for some w € W}. Prove
that the localization map R — W™! R factors through the quotient map R — R/I.

(c) Examine what this says about the example in Problem 1(b)v.
Definition. Let ¢ : R — S be a ring homomorphism. The contraction (to R) of an ideal J of S,
denoted J N R, is the ideal ¢! (J) of R. The expansion (to S) of an ideal I of R, denoted 1.5, is the
ideal of S generated by ¢(I).
3. Contraction and expansion.

(a) Show that (J N R)S C J for all ideals .J of S.

(b) Show that / C (1.S) N R for all ideals / of R.

(c) Give an example of a ring map R — S and a prime P of R such that PS is not prime.

'Or more precisely, a ring homomorphism R — W-IR
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(d) Given P € Spec R and YW C R multiplicatively closed, suppose that PN}V = &. Prove that
the expansion P(W™!R) is prime. What happens if P N W # &?

Definition. A ring is local if it has a unique maximal ideal.

4. The spectrum of a localization. Let V' C R be multiplicatively closed.

(a) Show that Spec W' R is homeomorphic to { P € Spec R | PN W = &} with the subspace
topology.
Hint: The maps are given by contraction and expansion.

(b) Given f € R, Ry denotes the localization of I at the multiplicatively closed set of positive

powers of f. Prove that Spec R; is homeomorphic to the complement, D(f), of V(f) in
Spec R.

(c) For P € Spec R, recall that W = R\ P is multiplicatively closed. Prove that in this case,
W™ R is a local ring. We call this ring the localization of R at P, and denote it Rp.

5. Fields determined by prime ideals. Given P € Spec R, there are two natural ways to con-
struct a field. The first is to take the fraction field of the domain R/P. The second way is to take
the quotient of the local ring Rp by its unique maximal ideal, which we denote k(P). Prove
that these two natural fields constructed from P are isomorphic by constructing an explicit
isomorphism between them. Make certain to verify that your maps are well-defined!

Definition. Recall that the radical of an ideal I of Ris /I = {f € R| f* € I for some n > 1}.
When I = 0is the zero ideal, we call v/T = /0 the nilradical of R, and sometimes denote it Nil(R).

Definition. Recall that a nonzero element of a ring is nilpotent if some positive power of it is zero.
A ring is called reduced if it contains no nilpotent elements.

6. Radicals, nilradicals, and nilpotents in terms of prime ideals.

(a) Prove that f € R is nilpotent if and only if f is contained in every prime ideal of R.

Hint: If f is not nilpotent, then what does this say about R;? You might want to call upon
the fact that every nonzero ring contains a maximal ideal.

(b) Conclude that
Ni(R)= () P= (] P
PeSpec R PEminSpec R

where minSpec R C Spec R is the set of primes that are minimal with respect to inclusion.
(c) Conclude that for any ideal I of R, /T = N P.

Pev(I)
Hint: What is the expansion of v/T in R/I?



