Throughout, R is an arbitrary commutative ring with unity. Recall that a subset W of R is *multiplicatively closed* if it is closed under products and contains 1.

Definition. Given a multiplicatively closed subset \mathcal{W} of R, the *localization* of R at \mathcal{W} is a ring¹, denoted $\mathcal{W}^{-1}R$, having the following universal property: For all ring homomorphisms $\varphi : R \to S$ such that $\varphi(\mathcal{W})$ consists of units in S, ϕ factors uniquely, as a ring map, through $R \to \mathcal{W}^{-1}R$. The ring $\mathcal{W}^{-1}R$ and the homomorphism $R \to \mathcal{W}^{-1}R$ are unique up to unique isomorphism.

Concretely: The localization $\mathcal{W}^{-1}R$ is the set of equivalence classes $\frac{r}{w}$ of pairs $(r, w) \in R \times \mathcal{W}$ under the following equivalence relation:

 $(r_1, w_1) \sim (r_2, w_2)$ if there exists $w \in \mathcal{W}$ such that $w(r_1w_2 - r_2w_1) = 0$.

1. Warm-up.

- (a) Describe what it means for an algebraic structure to be unique up to unique isomorphism.
- (b) What is the ring structure on $W^{-1}R$ and why is it *well defined*? Describe the maps in the above factorization explicitly and understand why they are uniquely determined.
- (c) Discuss good ways to understand $W^{-1}R$ explicitly in the following cases:
 - i. $R = \mathbb{Z}$ and $\mathcal{W} = \mathbb{Z} \setminus \{0\}$.
 - ii. *R* is any domain and $W = R \setminus \{0\}$.
 - iii. $R = \mathbb{Z}$ and $\mathcal{W} = \{2^n \mid n \ge 0\}$.
 - iv. $R = \mathbb{Z}$ and $\mathcal{W} = \mathbb{Z} \setminus 2\mathbb{Z}$.
 - v. $R = \mathbb{Z}/12\mathbb{Z}$ and $\mathcal{W} = \{\overline{1}, \overline{2}, \overline{4}, \overline{8}\}.$
 - vi. For a fixed integer $n \neq 0$, $R = \mathbb{Z}[x]/\langle nx 1 \rangle$ and $\mathcal{W} = \{n^k \mid k \ge 0\}$.
- (d) Explain how to think of $\mathcal{W}^{-1}R$ as a quotient of the polynomial ring $R[\{X_w\}_{w\in\mathcal{W}}\}]$.

2. The kernel of localization.

- (a) Characterize when localization $R \to W^{-1}R$ is injective in terms of W.
- (b) If $\mathcal{W} \subseteq R$ is multiplicatively closed, define $I = \{r \in R \mid rw = 0 \text{ for some } w \in \mathcal{W}\}$. Prove that the localization map $R \to \mathcal{W}^{-1}R$ factors through the quotient map $R \to R/I$.
- (c) Examine what this says about the example in Problem 1(b)v.

Definition. Let $\varphi : R \to S$ be a ring homomorphism. The *contraction* (to R) of an ideal J of S, denoted $J \cap R$, is the ideal $\varphi^{-1}(J)$ of R. The *expansion* (to S) of an ideal I of R, denoted IS, is the ideal of S generated by $\varphi(I)$.

3. Contraction and expansion.

- (a) Show that $(J \cap R)S \subseteq J$ for all ideals J of S.
- (b) Show that $I \subseteq (IS) \cap R$ for all ideals I of R.
- (c) Give an example of a ring map $R \to S$ and a prime P of R such that PS is not prime.

¹Or more precisely, a *ring homomorphism* $R \to W^{-1}R$

(d) Given $P \in \operatorname{Spec} R$ and $W \subseteq R$ multiplicatively closed, suppose that $P \cap W = \emptyset$. Prove that the expansion $P(W^{-1}R)$ is prime. What happens if $P \cap W \neq \emptyset$?

Definition. A ring is *local* if it has a unique maximal ideal.

- 4. The spectrum of a localization. Let $W \subseteq R$ be multiplicatively closed.
 - (a) Show that Spec $W^{-1}R$ is homeomorphic to $\{P \in \text{Spec } R \mid P \cap W = \emptyset\}$ with the subspace topology.

Hint: The maps are given by contraction and expansion.

- (b) Given f ∈ R, R_f denotes the localization of R at the multiplicatively closed set of positive powers of f. Prove that Spec R_f is homeomorphic to the complement, D(f), of V(f) in Spec R.
- (c) For $P \in \operatorname{Spec} R$, recall that $\mathcal{W} = R \setminus P$ is multiplicatively closed. Prove that in this case, $\mathcal{W}^{-1}R$ is a local ring. We call this ring the *localization of* R at P, and denote it R_P .
- 5. Fields determined by prime ideals. Given $P \in \text{Spec } R$, there are two natural ways to construct a field. The first is to take the fraction field of the domain R/P. The second way is to take the quotient of the local ring R_P by its unique maximal ideal, which we denote k(P). Prove that these two natural fields constructed from P are isomorphic by constructing an explicit isomorphism between them. Make certain to verify that your maps are well-defined!

Definition. Recall that the *radical* of an ideal I of R is $\sqrt{I} = \{f \in R \mid f^n \in I \text{ for some } n \ge 1\}$. When I = 0 is the zero ideal, we call $\sqrt{I} = \sqrt{0}$ the *nilradical* of R, and sometimes denote it Nil(R).

Definition. Recall that a nonzero element of a ring is *nilpotent* if some positive power of it is zero. A ring is called *reduced* if it contains no nilpotent elements.

6. Radicals, nilradicals, and nilpotents in terms of prime ideals.

- (a) Prove that $f \in R$ is nilpotent if and only if f is contained in *every* prime ideal of R. *Hint*: If f is not nilpotent, then what does this say about R_f ? You might want to call upon the fact that every nonzero ring contains a maximal ideal.
- (b) Conclude that

$$\operatorname{Nil}(R) = \bigcap_{P \in \operatorname{Spec} R} P = \bigcap_{P \in \min \operatorname{Spec} R} P$$

where minSpec $R \subseteq \text{Spec } R$ is the set of primes that are minimal with respect to inclusion.

(c) Conclude that for any ideal I of R, $\sqrt{I} = \bigcap_{P \in \mathbb{V}(I)} P$.

Hint: What is the expansion of \sqrt{I} in R/I?