Throughout, R and S are arbitrary commutative rings with unity, W is a multiplicatively closed subset of R, and M, N, and Q are R-modules unless otherwise specified.

Definition. The *localization* of M at W is an R-module W, denoted $W^{-1}M$, is the set of equivalence classes $\frac{u}{w}$ of pairs $(u, w) \in M \times W$ under the following equivalence relation:

 $(u_1, w_1) \sim (u_2, w_2)$ if there exists $w \in \mathcal{W}$ such that $w \cdot (w_2 \cdot u_1 - w_1 \cdot u_2) = 0$.

1. Warm-up.

- (a) Verify that $\mathcal{W}^{-1}M$ is an R-module, and that there is a natural R-module homomorphism $M \to \mathcal{W}^{-1}M$.
- (b) Find a universal property for the localization of M at W.

Hint: Your universal property might involve the bijectivity of certain multiplication maps. To get the idea, it might help to recall the universal property of $W^{-1}R$.

- (c) Find a natural action under which $W^{-1}M$ is a $W^{-1}R$ -module, and make sure it is well defined.
- 2. Extension of scalars. Given a ring homomorphism $R \to S$, recall that S is an R-module via restriction of scalars. Prove that for any R-module M, the R-module $S \otimes_R M$ is naturally an S-module.
- 3. Localization as the extension of scalars. Write a precise mathematical formula for the following statement, and prove it:

 $\mathcal{W}^{-1}M$ is the $\mathcal{W}^{-1}R$ -module obtained by extension of scalars of an R-module M.

4. Exactness of localization.

- (a) Given an *R*-module homomorphism $\varphi : M \to N$, find a naturally-induced $\mathcal{W}^{-1}R$ -module homomorphism $\mathcal{W}^{-1}\varphi : \mathcal{W}^{-1}M \to \mathcal{W}^{-1}N$.
- (b) Explain how the induced map from (a) relates to the following map:

$$\operatorname{id}_{\mathcal{W}^{-1}R}\otimes\varphi:\mathcal{W}^{-1}R\otimes_R M\to\mathcal{W}^{-1}R\otimes_R N.$$

(c) Prove that localization of modules is *exact* in the sense that given any short exact sequence $0 \rightarrow M \rightarrow N \rightarrow Q \rightarrow 0$, the following induced sequence is also exact:

$$0 \to \mathcal{W}^{-1}M \to \mathcal{W}^{-1}N \to \mathcal{W}^{-1}Q \to 0.$$

- (d) Conclude that if I is an ideal of R, then $W^{-1}(R/I)$ and $(W^{-1}R)/(W^{-1}I)$ are isomorphic $W^{-1}R$ -modules.
- 5. Local properties. If P is a prime ideal of R, we use M_P to denote $(R \setminus P)^{-1}M$.

(a) Given any *R*-module map $\varphi : M \to N$, its *cokernel* is the quotient coker $\varphi := N/\operatorname{Im} \varphi$. Prove that the formation of the kernel, cokernel, and image of φ commute with localization for all $P \in \operatorname{Spec} R$, i.e., the following hold, where $(-)_P$ denotes $(R \setminus P)^{-1}(-)$:

$$(\ker \varphi)_P = \ker(\varphi_P), (\operatorname{coker} \varphi)_P = \operatorname{coker}(\varphi_P), (\operatorname{Im} \varphi)_P = \operatorname{Im}(\varphi_P).$$

- (b) For any $u \in M$, its *annihilator* is $\operatorname{ann}_R u = \{r \in R \mid r \cdot u = 0\}$. Verify that $\operatorname{ann}_R u$ is an ideal of R, and is proper if and only if $u \neq 0$.
- (c) Show that $\frac{u}{1} \in M_P$ is nonzero if and only if $\operatorname{ann}_R u \subseteq P$.
- (d) Show that u = 0 if and only if $\frac{u}{1} \in M_P$ is zero for all $P \in \operatorname{Spec} R$.
- (e) Prove the same statement as in (d) after replacing Spec R with maxSpec R.
- (f) For any *R*-module map φ : M → N, prove that φ is injective (respectively, surjective) if and only if φ_P is injective (respectively, surjective) for every P ∈ Spec R (equivalently, every P ∈ maxSpec R).
- (g) Prove that submodules Q, Q' of N satisfy Q ⊆ Q' if and only if Q_P ⊆ (Q')_P for all P ∈ Spec R (equivalently, every P ∈ maxSpec R). *Hint*: Q ⊆ Q' if and only if (Q + Q')/Q' = 0.
- (h) Prove the following theorem:

Theorem. A sequence of *R*-modules $0 \rightarrow M \rightarrow N \rightarrow Q \rightarrow 0$ is exact if and only if

$$0 \to M_P \to N_P \to Q_P \to 0$$

is exact for all $P \in \operatorname{Spec} R$ (equivalently, all $P \in \max \operatorname{Spec} R$).

6. Localization commutes with tensor product. Prove, or find a counterexample, to the following statement: $\mathcal{W}^{-1}(M \otimes_R N) \cong \mathcal{W}^{-1}M \otimes_{\mathcal{W}^{-1}R} \mathcal{W}^{-1}N$.

Hint: You may want to start by using universal properties.