Throughout, R is a commutative ring with unity.

Definition. We call an *R*-module *flat* if for any short exact sequence $0 \rightarrow N \rightarrow P \rightarrow Q \rightarrow 0$, the induced sequence

$$0 \to N \otimes_R M \to P \otimes_R M \to Q \otimes_R M \to 0$$

is also exact.

1. Warm-up.

- (a) Characterize flatness of M in terms of $\varphi \otimes id_M$, for injection of R-modules φ . *Hint*: You might want to call upon a problem from the worksheet on exactness.
- (b) Given a multiplicatively closed set W of R, when is W⁻¹R flat?
 Hint: You might want to call upon a problem from the worksheet on localization of modules.
- (c) Prove that all free modules are flat.
- (d) Show that $\mathbb{Z}/2\mathbb{Z}$ is not flat over \mathbb{Z} . *Hint*: Consider the inclusion $2\mathbb{Z} \subseteq \mathbb{Z}$.

Theorem. An R-module M is flat if and only if for any exact sequence of R-modules

$$\cdots \to N_{i-1} \xrightarrow{\varphi_{i-1}} N_i \xrightarrow{\varphi_i} N_{i+1} \to \cdots$$

of arbitrary length, the induced sequence

$$\cdots \to N_{i-1} \otimes_R M \xrightarrow{\varphi_{i-1} \otimes \operatorname{id}_M} N_i \otimes_R M \xrightarrow{\varphi_i \otimes \operatorname{id}_M} N_{i+1} \otimes_R M \to \cdots$$

is also exact. Note: The original indices on the φ maps were (consistently) incorrect. This has been corrected.

2. Tensoring with flat modules preserve any exact sequence.

- (a) Following the notation in the theorem above, the inclusion $\operatorname{Im} \varphi_i \subseteq N_{i+1}$ induces a map $(\operatorname{Im} \varphi_i) \otimes_R M \to N_{i+1} \otimes_R M$ given on simple tensors by $w \otimes u \mapsto w \otimes u$. Prove that the image of this induced map is $\operatorname{Im}(\varphi_i \otimes \operatorname{id}_M)$, and explain why the induced map is an isomorphism onto this image.
- (b) The inclusion ker φ_i ⊆ N_i induces a map (ker φ_i) ⊗_R M → N_i ⊗_R M given on simple tensors by w ⊗ u ↦ w ⊗ u. Prove that the image of this induced map is ker(φ_i ⊗ id_M), and explain why the induced map is an isomorphism onto this image.

Hint: Consider the short exact sequence $0 \to \ker \varphi_i \to N_i \to \operatorname{Im} \varphi_i \to 0$. Tensor this with M over R, and use the (a) to obtain a complex that is isomorphic, as complexes, to $0 \to (\ker \varphi_i) \otimes M \to N_i \otimes M \to \operatorname{Im}(\varphi_i \otimes \operatorname{id}_M) \to 0$.

(c) Use (a), (b), and the exactness of the original sequence to prove the non-trivial direction of the above theorem.

3. Useful properties of flatness.

(a) Given an ideal I of R and an R-module M, let IM denote the subset of M consisting of all R-linear combinations of elements of M with coefficients in I. Verify that this is a submodule of M, and prove that, if M is flat, then $(I \cap J)M = IM \cap JM$.

Hint: Start with a short exact sequence from the worksheet on exact sequences.

(b) Fix x ∈ R and an ideal I of R. Prove that if S is a *flat* R-algebra (i.e., it is an R-algebra that is a flat R-module), then the ideals (I :_R x)S and (IS :_S x) (each subscript specifies the ring in which we are taking the colon) of S are equal. *Hint*: Realize (I :_R x) as the kernel of a map R → R/I. Is your map necessarily surjective?

Hint: Realize $(I :_R x)$ as the kernel of a map $R \to R/I$. Is your map necessarily surjective? If not, try using the sequence $0 \to (I :_R x) \to R \to R/I$. (Yes, the omission of the final zero is intentional!)

(c) We will later prove, under the condition that R is *Noetherian*, that if S is a flat R-algebra, M, N are R-modules, and if M is finitely generated, then Hom commutes with flat base change. That is, the natural homomorphism

 $S \otimes_R \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_S(S \otimes_R M, S \otimes_R N)$

is an isomorphism. Specify this natural homomorphism.