
Worksheet: Integral Extensions

Here, S is an R-algebra via a ring map R → S, where R and S are commutative with unity.

Definition. We call an R-algebra S a finitely generated R-algebra (or algebra finite) if there exist
finitely many s1, . . . , sn ∈ S such that any element of S can be written as a polynomial in the si
with coefficients in R.

Definition. An R-algebra S is module finite over R if S is finitely generated as an R-module.

Definition. An element s of an R-algebra S is integral over R if s satisfies a monic polynomial
with coefficients in R. We call S an integral R-algebra if every element of S is integral over R.

1. Warm-up.
(a) Which is a stronger condition, algebra finite or module finite? Justify your answer.
(b) Determine, for each algebra below, which of the following properties is satisfied:

module finite, algebra finite, and integral.

i. The Z-algebra of Gaussian integers Z[i] = {a+ ib : a, b ∈ Z}.
ii. The Q-algebra C.

iii. The R-algebra C.
iv. The Z-algebra Z[{

√
n : n ∈ N}].

Hint: You can use the theorem stated below for the question of integrality, since you
will prove it later on in this worksheet. To address the question of algebra finiteness,
suppose that Z[{

√
n : n ∈ N}] is algebra finite over Z. Is there a finite set of algebra

generators of the form
√
p1, . . . ,

√
pk, for primes pi? If so, and p is distinct from the pi,

then
√
p /∈ Z[√p1, . . . ,

√
pk] ⊆ Q(

√
p1, . . . ,

√
pk). The following lemma might be useful

in understanding whether this is possible: If nn1 · · ·nk is squarefree, where n, ni ∈ N,
then

√
n /∈ Q(

√
n1, . . . ,

√
nk).

v. The quotient R/I via the natural surjection R → R/I , where I is an ideal of R.
vi. The inclusion C[x] ⊆ C[x, y].

vii. The localization map R[x] → R[x]x := W−1R[x], with W = {1, x, x2, . . .}.

Theorem. An R-algebra is module finite if and only if it is both finitely generated (as an R-algebra)
and integral.

2. One half of the theorem. After replacing R with its image in S, convince yourself that in
proving the theorem above, we can assume that R ⊆ S.

(a) Prove that an element s ∈ S is integral over R if and only if R[s]–the smallest subring of S
containing R and s, or equivalently, the subset of S consisting of all polynomial expressions
in s with coefficients in R–is module finite over R.

(b) Prove that if S is integral and algebra finite over R, then S is module finite over R.
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3. A bit of linear algebra over rings. Recall that for a positive integer n,

Rn = R⊕R · · · ⊕R.

As when R is a field, we can regard Rn as the set of all column vectors of length n with entries
in R. Columns are added componentwise, and the product of an element of R times a column
is likewise given by componentwise multiplication.

(a) Explain how an m × n matrix with entries in R determines an R-linear map Rn → Rm.
Furthermore, explain why an arbitrary R-linear map ϕ : Rn → Rm must be given by multi-
plication by a matrix. How do you describe this matrix in terms of ϕ? To make sure that that
this is completely clear, describe the matrix associated to the Z[x]-linear map

Z[x]⊕ Z[x] → Z[x]⊕ Z[x]

given by (f, g) 7→ (fx+ g,−f + x2g).
(b) Convince yourself that matrix multiplication makes sense for matrices with entries in R.

Similarly, convince yourself that determinants make sense for square matrices with entries
in R. Now, suppose that ϕ : R → S is a ring map, and given a matrix M with entries in
R, let ϕ(M) be the matrix with entries in S obtained by applying ϕ component-wise to R.
Verify that if M,N are matrices over R whose dimensions are such that the product MN is
defined, then ϕ(MN) = ϕ(M)ϕ(N). Similarly, verify that if M is a square matrix over R,
then det(ϕ(M)) = ϕ(det(M)).

4. The determinant trick. Let M be a square matrix over R. As in the case when R is a field,
let adj(M) be the matrix whose (i, j)-th entry is (−1)i+j det(Mji), where Mij is the square
matrix obtained from M by omitting its i-th row and j-th column. In other words, adj(M) is
the transpose of the matrix of cofactors of M . Our goal is to prove that

M adj(M) = adj(M)M = det(M) I (♡)

where I is the identity matrix of the appropriate size. Note that in this equation, on the left-hand
side we are taking multiplication of matrices, while on the right-hand side we are multiplying
I by the “scalar" det(M) ∈ R.

(a) Remind yourself that (♡) holds whenever R is a field. If this fact isn’t familiar to you from a
linear algebra class, go ahead and prove it–it isn’t very hard if you remember how to compute
a determinant over a field by expanding across a row or column. If you prove this statement,
notice that the proof works over any ring, and skip the remaining parts of this problem. If
you decide not to prove it, explain why the fact that (♡) holds for R a field implies that it
holds whenever R is a domain, and continue to part (b).
Hint: Every domain sits inside of its fraction field.

(b) Explain why, if (♡) holds for every square matrix over R, and if there exists a surjective ring
map ϕ : R → S, then (♡) also holds for every square matrix over the target ring S.
Hint: Use a result from Problem 1.

(c) Conclude that (♡) is always valid, regardless of the ring R.
Hint: Construct a surjective ring map θ : D → R with D a domain. This can be done many
ways, e.g., with D a polynomial ring over Z (you may need infinitely many variables).
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5. The other half of the theorem. Suppose R ⊆ S is an inclusion of rings, and that S is module
finite over R. From the Warm-up, we know that S is algebra finite over R, so it remains to prove
that S is integral over R. As S is module finite over R, we can fix a set of generators s1, . . . , sn
for S as an R-module, and we may as well include 1 in this set, so assume that s1 = 1.

(a) Multiply each of the generators si by s to obtain the element ssi ∈ S. Explain why there
exists elements aij ∈ R such that

ssi =
n∑

j=1

aijsj

for each i = 1, . . . , n. Then, use the elements aij ∈ R to define a matrix M with coefficients
inR, and so with coefficients in S. Explain why we can rewrite the above system of equations
as a single matrix equation over S

sIv = Mv

where v = (s1, · · · , sn) and I is the n× n identity matrix.
(b) Rewrite this matrix equation in the form (M − sI)v = 0, and use this to prove that as an

element of S, det(M − sI) = 0.
Hint: Multiply by adj(M − sI), and remember that one of your generators equals 1.

(c) Conclude that the element s ∈ S that we fixed satisfies a monic polynomial with coefficients
in R. In other words, you have just proved that S is integral over R.

(d) This process might seem a little abstract, so work through the case that R = Z and S = Z[i]
and s = a+ ib to construct a monic polynomial over R = Z satisfied by s.

Lemma. Let R → S → T be ring homomorphisms, under which S is module finite over R
with generators s1, . . . , sm, and T is module finite over S with generators t1, . . . , tn. Then via
compositionR → T , T is module finite overR with themn generators sitj , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Theorem. If S is an R-algebra, then the elements of S integral over R form a subring of S.

6. Integral elements form a subring. First notice that to prove the above theorem, we can again
assume R ⊆ S.

(a) Let s, s′ be elements of S integral over R. Explain why R[s] is module finite over R, and s′

is integral over R[s].
(b) Explain why (a) implies that (R[s])[s′] = R[s, s′] is module finite over R[s].
(c) Prove the above lemma.
(d) Use your work so far to conclude that (R[s])[s′] = R[s, s′] is module finite over R, so that

s± s′ and ss′, which are in R[s, s′], are integral over R.
(e) Which subsets of {module finite, algebra finite, integral} are possible for an R-algebra S?

Hint: You might want to return to the Warm-up, armed with your more powerful theroem(s)!
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