Throughout, $R \subseteq S$ is an extension of commutative rings with unity making S an R-algebra. Recall from the worksheet on localization of rings that the *radical* \sqrt{I} of an ideal I of R is the ideal consisting of the elements $x \in R$ such that $x^n \in I$ for some $n \ge 1$.

Definition. Fix a prime ideal P of R. A prime ideal Q of S lies over P if it contracts to P in R, i.e., $Q \cap R = P$.

Theorem (Lying Over). If $R \subseteq S$ is an integral extension, then the following hold.

- 1. If I is an ideal of R, then $I \subseteq IS \cap R \subseteq \sqrt{I}$.
- 2. The induced map $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ is surjective. That is, for every prime ideal P of R, there exists a prime ideal of S lying over P.
- 3. The inverse image of every prime ideal in $\operatorname{Spec}(R)$ under the map $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ consists of incomparable prime ideals of S. That is, if $Q \neq Q'$ are two prime ideals of S lying over the same prime ideal of R, then $Q \not\subseteq Q'$ and $Q' \not\subseteq Q$.

1. Warm-up.

- (a) Characterize what it means for a prime ideal in S to lie over a prime ideal of R in terms of the induced map on prime spectra. Then verify that regardless of whether $R \subseteq S$ is integral, the two sentences in the statement of Lying over, Part 2 are equivalent.
- (b) Does Part 1 of the Lying over theorem hold for the extension $\mathbb{Z} \subseteq \mathbb{Q}$? What about Part 2?
- (c) Find all prime ideals of $\mathbb{Z}[i]$ lying over the prime ideal $\langle 2 \rangle$ of \mathbb{Z} , and the prime ideal $\langle 3 \rangle$ of \mathbb{Z} .
- (d) Let S be the ring of functions from some infinite set X to $R = \mathbb{Z}/2\mathbb{Z}$. Is $R \subseteq S$ integral? Find infinitely many mutually incomparable prime ideals of S lying over the zero ideal of R.

Lemma. Suppose that $R \subseteq S$ is integral, and let I be an ideal of R. If an element $u \in S$ is in IS, the expansion of I to S, then u satisfies a monic polynomial with coefficients $r_i \in I$:

$$u^{n} + r_{n-1}u^{n-1} + \dots + r_{1}u + r_{0} = 0.$$

2. Proving the lemma.

- (a) Is the conclusion of the lemma obvious when I = R? Briefly explain.
- (b) Write $u \in IS$ as $u = a_1s_1 + \cdots + a_ms_m$ with all $a_i \in I$. If T denotes the subring $R[s_1, \cdots, s_m]$ of S, explain why $u \in IT$, and why T is module finite over R.

Hint: Review the worksheet on integral extensions.

(c) Let t_1, \dots, t_n be generators for T as an R-module (we can take the t_i to be monomials in s_1, \dots, s_m). As in the Integral Extensions Worksheet, notice that we can assume that $t_1 = 1$. Then explain why we have equations of the form

$$ut_i = \sum_{j=1}^n b_{ij} t_j$$

2

with $b_{ij} \in I$ for each *i* and *j*.

Hint: Because u is in IT, an ideal of T, then so is ut_i . Hence we can express ut_i as a T-linear combination of elements of I. Rewrite each of the T-coefficients in this expression as an R-linear combination of t_1, \dots, t_n and gather terms.

- (d) Use the determinant trick from our previous worksheet to construct the desired monic polynomial.
- (e) Does the polynomial you constructed satisfy the stronger property that each coefficient $r_i \in I^{n-i}$? Aside: Look up the definition of the integral closure of an ideal, and compare it to this situation

3. Proving the Lying Over theorem, Part 1.

- (a) Prove that $I \subseteq IS \cap R$. Does your argument use the assumption that S is integral over R?
- (b) Prove that $IS \cap R \subseteq \sqrt{I}$.

Hint: Let $u \in IS \cap R$, and solve for the largest power of u in the monic polynomial with coefficients in I that you constructed above.

- (c) We say that an ideal I of R is *radical* if $\sqrt{I} = I$. What does the Lying Over theorem, Part 1 say in this case? Prove that every prime ideal is radical.
- 4. Proving the Lying Over theorem, Part 2. For $P \in \text{Spec}(R)$, we aim to find $Q \in \text{Spec}(S)$ such that $Q \cap R = P$.
 - (a) Let $U = R \setminus P$. Explain why U is a multiplicatively closed subset of S, and then find $U \cap PS$. *Hint*: Use the last part of your proof of Lying Over, Part 1.
 - (b) Conclude that $U^{-1}(PS)$, the expansion of PS to $U^{-1}S$, is a proper ideal of $U^{-1}S$. Thus, there exists a maximal ideal of $U^{-1}S$ containing $U^{-1}(PS)$. Explain why this maximal ideal is of the form $U^{-1}Q$ for some $Q \in \text{Spec}(S)$ with $Q \cap U = \emptyset$. Then, prove that $Q \cap R = P$. *Hint*: What does $Q \cap U = \emptyset$ say about a containment involving $Q \cap R$ and P? What does the containment $U^{-1}(PS) \subseteq U^{-1}Q$ say about a containment involving $Q \cap R$ and P?

Congratulations! You've just proven the most complicated part of the Lying Over theorem.

Lemma. Suppose that $R \subseteq S$ is an integral extension of domains. Then for every nonzero element $s \in S$, there exists nonzero $s' \in S$ such that ss' (which is nonzero since S is a domain) is an element of R. In other words, every nonzero element of S has a nonzero multiple in R.

5. Proving the Lying Over theorem, Part 3.

(a) Prove the above lemma.

Hint: Consider a monic equation with coefficients over R satisfied by s. Factor out the largest power of s that you can from this expression to get an expression of the form $s^m \cdot g = 0$. Conclude that g = 0. But what is the constant term of g?

(b) Prove that if S, and hence R, is a domain, then the only prime of S lying over the zero ideal in R is the zero ideal.

Hint: If $Q \in \text{Spec}(S)$ lies over $\langle 0 \rangle \in \text{Spec}(R)$, then take any purported nonzero element of Q, and apply the previous part of this problem to it.

(c) Prove that if $Q \in \text{Spec}(S)$ lies over $P \in \text{Spec}(R)$, then $R/P \to S/Q$ is still integral.

Hint: Convince yourself that $R/P \rightarrow S/Q$ is injective. What is its image? Once this is clear to you, this should be pretty obvious.

(d) Convince yourself that to prove Part 3 of Lying Over, it suffices to prove that if $Q \subseteq Q'$ are two primes in Spec(S) that lie over $P \in \text{Spec}(R)$, then Q = Q'. Then, prove this.

Hint: Why must $R/P \hookrightarrow S/Q$ be an integral extension of domains? Why is $Q'/Q \in \text{Spec}(S/Q)$? What does Q'/Q contract to under $R/P \hookrightarrow S/Q$? Once all of this is clear to you, apply an earlier part of this problem.