
Worksheet 16: Noether Normalization

Throughout, R, S, and T are commutative rings with unity, and k denotes a field. Recall the
following definition, which was used when we investigated the notion of tensor products of algebras.

Definition. If S, T are R-algebras, then we call a map φ : S → T an R-algebra homomorphism if φ
is a ring homomorphism that is also an R-module homomorphism. In other words, φ must preserve
products and sums, and also satisfiesφ(rs) = rφ(s) for each r ∈ R and s ∈ S (note that multiplication
often has different meanings on each side of this equation!)

1. Warm-up: More on algebras.

(a) Suppose that S and T are R-algebras with structure maps α : R → S and β : R → T ,
respectively. Show that anR-algebra homomorphism φ : S → T is a ring homomorphism such
that a certain diagram depending on α, β, and φ commutes.

(b) Given a ring R, we may regard the polynomial ring S = R[x1, . . . , xn] as an R-algebra in
the obvious way. Defining an R-algebra homomorphism from S to any other R-algebra T is
equivalent to specifying n elements of T . Make this statement precise.1

Hint: If φ : S → T is an R-algebra map, then where must s ∈ S be sent? The variables?
(c) Explain why the quotient of a finitely generatedR-algebra S by an ideal I of S is again a finitely

generated R-algebra. What is the structure homomorphism of S/I? What are the R-algebra
generators of S/I in terms of the R-algebra generators of S?

(d) Why is the structure map of a k-algebra injective? (Why is the structure map of an algebra not
the zero map?) Conclude that a k-algebra is nothing more than a ring containing a copy of the
field k. How does this simplify what it means to be a map of k-algebras? How do we define a
k-algebra map from a polynomial ring over k?

(e) Prove thatS is a finitely-generated k-algebra if and only if for some integer n ≥ 0 and some ideal
I of the polynomial ring k[x1, . . . , xn], there is a k-algebra isomorphism2 S ∼= k[x1, . . . , xn]/I .
Hint: If S is algebra finite over k, fix n algebra generators and use them to construct a map from
the polynomial ring to S.

Theorem (Noether Normalization). LetR be a finitely-generated k-algebra. Then there exists an integer
d ≥ 0 and elements zi ∈ R, 1 ≤ i ≤ d, that are algebraically independent over k, such that R is module
finite over A = k[z1, . . . , zd], the smallest subring of R containing k and the zi.

Definition. With the theorem’s setup, the subring A is called a Noether normalization of R.

2. Algebraic independence. Let k be a field, and letR be a k-algebra. Informally, elements z1, . . . , zd
of R are algebraically independent over k if they act as variables, as far as k is concerned. More
precisely, z1, . . . , zd are algebraically independent over k if the only polynomial f ∈ k[x1, . . . , xd]
for which f(z1, . . . , zd) = 0 is the zero polynomial.

1Compare this to the situation in linear algebra, where to define a linear transformation T : V → W from a finite
dimensional vector space V , it suffices to describe what T does to a basis for V .

2You have just shown that any finitely-generated k-algebra must look like k[x1, . . . , xn]/I for some ideal I . Though
this might seem like a restrictive class of rings, it essentially encompasses every ring that appears in classical algebraic
geometry (where it is even often assumed that k = C)! In fact, it is common to attend entire conferences/workshops/year-
long seminars where every talk involves finitely generated algebras over a field, or modules over such rings, in an essential
way.
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For instance, if k = Q and R = R, then π ∈ R is algebraically independent over k, but
√
2 ∈ R

is not. Similarly, if R = k[x, y], then x, x + y and x + y, x− y are both algebraically independent
over k, but x+ y, x2 + y2 + 2xy − x− y are not.

For elements z1, . . . , zd of a k-algebra R, show that the following are equivalent.

(a) z1, . . . , zd are algebraically independent over k.
(b) The k-algebra homomorphism k[x1, . . . , xd] → R given by xi 7→ zi is injective, and hence

induces a k-algebra isomorphism from k[x1, . . . , xd] to the subring A = k[z1, . . . , zd] ⊆ R.
(c) The collection of all monomials za = za11 . . . zadd ∈ R with a = (a1, . . . , ad) ∈ Nd is linearly

independent over the field k.

3. Uniqueness properties of Noether normalizations. As you will see in #5, a given finitely
generated k-algebra R usually has more than one distinct Noether normalization; that is, there
exist z1, . . . , zd ∈ R and w1, . . . , we ∈ R satisfying the following conditions.

• Each of z1, . . . , zd and w1, . . . , we are algebraically independent over k.
• The subrings A = k[z1, . . . , zd] and B = k[w1, . . . , we] of R satisfy A ̸= B.
• Nevertheless, both extensions A ⊆ R and B ⊆ R are module finite.

Explain why, in this context, we at least must have that d = e. Your arguments may use the
formula (which we conjectured, but must still prove in the next worksheet) for the dimension of a
polynomial ring over a field. Hint: Use Lying Over. Use dim corollary?

4. Finding Noether normalizations. Describe two Noether Normalizations A ̸= B of each finitely
generated Q-algebra R below. Justify that the extensions A ⊆ R and B ⊆ R are module finite by
identifying generators.

(a) R = Q[x, y, z]. As one of A and B, find the simplest proper Noether normalization.
(b) R = Q[x, y, z]/⟨z2 − xy⟩.
(c) R = Q[x, y]/⟨xy⟩. Hint: Apply a simple change of coordinates to Q[x, y].

The following is called Zariski’s lemma?

5. Consequence: Algebra-finite field extensions are finite dimensional vector spaces. Recall
that we have shown that “module finite = algebra finite + integral" for ring extensions. You will
now prove that “module finite = algebra finite" for field extensions: Suppose that k ↪→ L is an
extension of fields, and that L is a finitely generated as a k-algebra (e.g., think of R ⊆ C). Prove
that [L : k] must be finite (i.e., L is a finite dimensional k-vector space).

Hint: In a previous worksheet, we proved that the dimension of a polynomial ring over k in n
variables is at least n. What does this tell us about how many “variables" can appear in a Noether
Normalization for the field extension k ⊆ L?

6. Consequence: The inverse image of a maximal ideal. We know that the inverse image, under
a ring map, of a prime ideal must also be prime. Here, we investigate the situation for maximal
ideals. Consider a map of rings φ : R → S, and fix a maximal ideal n of S.

(a) Illustrate, via example, that φ−1(n) need not be a maximal ideal of R.
(b) On the other hand, prove that if R, S are finitely-generated k-algebras, and φ : R → S is a

k-algebra map, then φ−1(n) is a maximal ideal of R.
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Hint: Explain why there is a sequence of inclusions k ↪→ R/φ−1(n) ↪→ S/n. According to the
warm-up, each of these rings is a finitely generated k-algebra. Problem #5 and the composition
k ↪→ S/n imply that S/n is a finite dimensional vector space over k, and hence so is R/φ−1(n).
In other words, k ↪→ R/φ−1(n) is a module finite extension. What does Lying Over tell us about
the Krull dimension of R/φ−1(n)? But isn’t R/φ−1(n) a domain? Why do the answers to these
questions force this ring to be a field?

Theorem (Hilbert’s Nullstellensatz3). If k is an algebraically closed field, then every maximal ideal m
of k[x1, . . . , xn] has the form m = ⟨x1 − α1, . . . , xn − αn⟩ for some α1, . . . , αn ∈ k.

7. Consequence: Hilbert’s Nullstellensatz.
(a) Prove that every ideal m of the above form must be maximal, whether k is algebraically closed

or not. Conclude that the Nullstellensatz provides a complete description of all the maximal
ideals in k[x1, . . . , xn] when k is algebraically closed.
Hint: Consider the k-algebra map k[x1, . . . , xn] → k defined by xi 7→ αi for all i.

(b) Illustrate via example that the Nullstellensatz fails if we remove the hypothesis that k = k.
(c) We now prove the Nullstellensatz: Suppose k is algebraically closed, and letm be a maximal ideal

of R = k[x1, . . . , xn]. The warm-up tells us that L := k[x1, . . . , xn]/m is a finitely-generated
k-algebra, and maximality of m implies that L is also a field.
i. Consider the sequence k ↪→ R → R/m = L, and explain why the composition k ↪→ L must

be an isomorphism. Hint: Consider an earlier consequence, and use the fact that k = k.
ii. Let αi ∈ k be the elements that correspond to xi ∈ L under this isomorphism, and let
φ : k[x1, . . . , xn] → k be the k-algebra map defined by xi 7→ αi. Verify that

k[x1, . . . , xn]

��

// k

L

99

commutes, where the horizontal map is φ, the vertical map is the quotient map, and the
diagonal map is the inverse of the isomorphism k ↪→ L.

iii. Use this diagram to explain why the ideals ⟨x1 − α1, . . . , xn − αn⟩ and m both lie in kerφ.
Conclude your proof by explaining why this forces these ideals to be equal.

iv. Nullstellen-what? From German, Nullstellensatz translates to zero-locus-theorem. Prove
the following corollary, which explains the name: Suppose that I is an ideal of k[x1, . . . , xn],
where k = k. Then I is proper if and only if the polynomials in I have a common zero, i.e.,
there exists a ∈ kn for which f(a) = 0 for every f ∈ I .

Lemma. Let S be a polynomial ring over k in some fixed variables, and fix a nonzero polynomial f ∈ S.
Given a variable x, there exists a change of variables–i.e., an k-algebra automorphism of S–that fixes x,
and transforms f into a nonzero k-multiple of a monic polynomial in xwith coefficients in the polynomial
ring over k generated by the other variables.

Example. Consider f = xy ∈ k[x, y], which neither monic in x nor in y. However, after applying
the change of variables given by x 7→ x and y 7→ x + y, f 7→ x(x + y) = x2 + xy, which is

3This version of the theorem is sometimes called the “weak form” of Nullstellensatz; the full version gives a strong
correspondence between algebra and geometry. You will get a taste of this in the last part of following problem.
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monic in S = T [x], with T = k[y]. Similarly, if we instead send x 7→ x + y and y 7→ y, then
f 7→ (x+ y)y = xy + y2, which is monic in y when we consider its coefficients to be in k[x].

8. Proving the lemma. Given a nonzero f ∈ S = k[x0, x1, . . . , xn], to prove the lemma, we seek to
define an automorphism S → S of k-algebras such that x0 7→ x0 and

f 7→ c(xm0 + q1x
m−1
0 + · · ·+ qm−1x0 + qm) (♣)

where c ∈ k is nonzero, m is a natural number, and each qi = qi(x1, . . . , xn) ∈ k[x1, . . . , xn].

(a) Fix g1, . . . , gn ∈ k[x0], and consider the k-algebra map k[x0, . . . , xn] → k[x0, . . . , xn] given by
x0 7→ x0 and xi 7→ xi + gi for each i ̸= 0. Explain why this is an k-algebra automorphism by
briefly describing an inverse map that is also an k-algebra map.

(b) Fix an integer b > 0, and consider the k-algebra automorphism ψb of S defined by

xi 7→

{
x0 i = 0

xi + xb
i

0 i ̸= 0

With this change of variables, explain why (♣) holds when f = cxa00 x
a1
1 · · ·xann , where c ∈ k∗.

Hint: The m value in this case should be m = a0 + a1b+ · · ·+ anb
n.

(c) Now take an arbitrary nonzero f ∈ S, and fix an integer b larger than any exponent appearing
in any supporting monomial of f . Explain why ψb satisfies (♣).
Hint: Express f as the finite sum of terms of the form cax

a := cax
a0
0 · · ·xann , where a =

(a0, a1, . . . , an) ∈ Nn+1. Where does ψb send f? Finally, recall that every nonnegative inte-
ger has a unique base b expansion. Where does the choice of large b come into play?

9. Proof of Noether Normalization. Fix R be a finitely-generated k algebra. We will now prove4

Noether Normalization by inducing on the number of generators of R over A.

(a) Explain why the base case n = 0 is trivial.
(b) Consider our inductive hypothesis: Suppose g0, . . . , gn are k-algebra generators for R, and that

Noether Normalization holds for all k-algebras generated by fewer elements. Explain why the
inductive step is trivial if g0, . . . , gn are algebraically independent over k.

(c) Otherwise, there is some polynomial F ∈ k[x0, . . . , xn] such that F (g0, . . . , gn) = 0. Fix b ∈ N
greater than any exponent appearing in F , and set h0 = g0 and hi = gi + gb

i

0 for each i ̸= 0.
Explain why A = k[g0, g1, . . . , gn] and B = k[h0, h1, . . . , hn] both equal R.
Hint: A = R by our inductive hypothesis. To see that A ⊆ B, why does it suffice to show that
gi ∈ B for all i?

(d) Use the k-algebra automorphism ψb from #8 to explain why F (g0, . . . , gn) = 0 in R can be
expressed in terms of h0, . . . , hn as c(hm0 + a1h

m−1
0 + · · ·+ am−1h0+ am) = 0 where c ∈ k∗ and

each ai ∈ D = k[h1, . . . , hn].
(e) Conclude that h0 is integral over D = k[h1, . . . , hn], and so R = B is module finite over D.

Finally, apply the inductive hypothesis to the finitely generated k-algebra D to conclude that
there is a Noether normalization N ⊆ D for D. But if N ⊆ D is module finite and D ⊆ A is
module finite, then isn’t the composition of module finite extensions module finite? Conclude
that N is a Noether normalization of R!

4At this point, based on everything that follows from it, you should be left with the impression that Noether Normal-
ization is important, and it is. Even better, its proof isn’t too complicated!
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