Worksheet 16: Noether Normalization

Throughout, R, S, and 7" are commutative rings with unity, and k denotes a field. Recall the
following definition, which was used when we investigated the notion of tensor products of algebras.

Definition. If S,T" are R-algebras, then we call a map ¢ : S — T an R-algebra homomorphism if ¢
is a ring homomorphism that is also an k-module homomorphism. In other words, ¢ must preserve
products and sums, and also satisfies p(rs) = r¢(s) foreachr € Rand s € S (note that multiplication
often has different meanings on each side of this equation!)

1. Warm-up: More on algebras.

(a) Suppose that S and 7" are R-algebras with structure maps a : R — Sand f : R — T,
respectively. Show that an R-algebra homomorphism ¢ : S — 7' is a ring homomorphism such
that a certain diagram depending on «, 3, and ¢ commutes.

(b) Given a ring R, we may regard the polynomial ring S = R[zi,...,x,] as an R-algebra in
the obvious way. Defining an R-algebra homomorphism from S to any other R-algebra 7 is
equivalent to specifying n elements of 7. Make this statement precise.’

Hint: If p : S — T is an R-algebra map, then where must s € S be sent? The variables?

(c) Explain why the quotient of a finitely generated R-algebra S by an ideal I of .S is again a finitel
p ytheq yg g y g y
generated R-algebra. What is the structure homomorphism of S/I? What are the R-algebra
generators of S/ in terms of the R-algebra generators of S?

(d) Why is the structure map of a k-algebra injective? (Why is the structure map of an algebra not
the zero map?) Conclude that a k-algebra is nothing more than a ring containing a copy of the
field k. How does this simplify what it means to be a map of k-algebras? How do we define a
k-algebra map from a polynomial ring over k?

(e) Provethat S is a finitely-generated k-algebra if and only if for some integer n > 0 and some ideal
I of the polynomial ring k[z1, . .., 2], there is a k-algebra isomorphism?® S = k[z1, ..., z,]/I.
Hint: If S is algebra finite over k, fix n algebra generators and use them to construct a map from
the polynomial ring to S.

Theorem (Noether Normalization). Let R be a finitely-generated k-algebra. Then there exists an integer
d > 0 and elements z; € R, 1 <1 < d, that are algebraically independent over k, such that R is module
finite over A = Kk[z1, ..., z4], the smallest subring of R containing k and the z;.

Definition. With the theorem’s setup, the subring A is called a Noether normalization of R.

2. Algebraic independence. Let k be a field, and let R be a k-algebra. Informally, elements z1, .. ., z4
of R are algebraically independent over k if they act as variables, as far as k is concerned. More
precisely, z1, . .., z4 are algebraically independent over k if the only polynomial f € k[xy, ..., 24
for which f(z1,...,24) = 0 is the zero polynomial.

!Compare this to the situation in linear algebra, where to define a linear transformation 7' : V' — W from a finite
dimensional vector space V/, it suffices to describe what 7" does to a basis for V.

2You have just shown that any finitely-generated k-algebra must look like k[z1, . .., z,]/I for some ideal I. Though
this might seem like a restrictive class of rings, it essentially encompasses every ring that appears in classical algebraic
geometry (where it is even often assumed that k = C)! In fact, it is common to attend entire conferences/workshops/year-
long seminars where every talk involves finitely generated algebras over a field, or modules over such rings, in an essential
way.
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For instance, if k = Q and R = R, then 7 € R is algebraically independent over k, but V2 €eR
is not. Similarly, if R = k[z, y|, then z, 2 + y and x + y, x — y are both algebraically independent
over k, but z + y, 22 + y* + 22y — ¥ — y are not.

For elements 21, . .., z4 of a k-algebra R, show that the following are equivalent.

(@) 21,...,z2 are algebraically independent over k.

(b) The k-algebra homomorphism k[z1,...,24] — R given by z; — z; is injective, and hence
induces a k-algebra isomorphism from k[x, . . ., x4] to the subring A = k[z1,...,24] C R.

(c) The collection of all monomials 2 = 2{*...25? € R with a = (ay,...,aq) € N is linearly
independent over the field k.

3. Uniqueness properties of Noether normalizations. As you will see in #5, a given finitely
generated k-algebra R usually has more than one distinct Noether normalization; that is, there
exist z1,...,24 € Rand wy, ..., w, € R satisfying the following conditions.

« Eachof 2q,...,25and wy, ..., w, are algebraically independent over k.
« The subrings A = k[z1, ..., 24) and B = k[wy, ..., w,.] of R satisty A # B.
« Nevertheless, both extensions A C R and B C R are module finite.

Explain why, in this context, we at least must have that d = e. Your arguments may use the
formula (which we conjectured, but must still prove in the next worksheet) for the dimension of a
polynomial ring over a field. Hint: Use Lying Over. Use dim corollary?

4. Finding Noether normalizations. Describe two Noether Normalizations A # B of each finitely
generated Q-algebra R below. Justify that the extensions A C R and B C R are module finite by
identifying generators.

(@) R = Q[z,vy,z]. As one of A and B, find the simplest proper Noether normalization.

(b) R =Qlx,y,2]/(z* — xy).
(¢) R=Qlz,y]/(zy). Hint: Apply a simple change of coordinates to Q[z, y|.

The following is called Zariski’s lemma?

5. Consequence: Algebra-finite field extensions are finite dimensional vector spaces. Recall
that we have shown that “module finite = algebra finite + integral” for ring extensions. You will
now prove that “module finite = algebra finite" for field extensions: Suppose that k < L is an
extension of fields, and that LL is a finitely generated as a k-algebra (e.g., think of R C C). Prove
that [L : k] must be finite (i.e., L is a finite dimensional k-vector space).

Hint: In a previous worksheet, we proved that the dimension of a polynomial ring over k in n
variables is at least n. What does this tell us about how many “variables" can appear in a Noether
Normalization for the field extension k C LL?

6. Consequence: The inverse image of a maximal ideal. We know that the inverse image, under
a ring map, of a prime ideal must also be prime. Here, we investigate the situation for maximal
ideals. Consider a map of rings ¢ : R — 5, and fix a maximal ideal n of S.

(a) Illustrate, via example, that ¢! (n) need not be a maximal ideal of R.

(b) On the other hand, prove that if 7, S are finitely-generated k-algebras, and p : R — S is a
k-algebra map, then o~ !(n) is a maximal ideal of R.
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Hint: Explain why there is a sequence of inclusions k < R/¢ ™! (n) < S/n. According to the
warm-up, each of these rings is a finitely generated k-algebra. Problem #5 and the composition
k < S/n imply that S/n is a finite dimensional vector space over k, and hence so is R/p~!(n).
In other words, k = R/ ~!(n) is a module finite extension. What does Lying Over tell us about
the Krull dimension of R/¢~!(n)? Butisn’t R/ (n) a domain? Why do the answers to these
questions force this ring to be a field?

Theorem (Hilbert’s Nullstellensatz®). Ifk is an algebraically closed field, then every maximal ideal m
of k[xy,...,x,] has the formm = (xy — oy, ..., T, — ) forsomeay,. .., a, € k.

7. Consequence: Hilbert’s Nullstellensatz.

(a) Prove that every ideal m of the above form must be maximal, whether k is algebraically closed
or not. Conclude that the Nullstellensatz provides a complete description of all the maximal
ideals in k[z1, . .., z,] when k is algebraically closed.

Hint: Consider the k-algebra map k[x1, ..., z,| — k defined by x; — «; for all i.
(b) Illustrate via example that the Nullstellensatz fails if we remove the hypothesis that k = k.

(c) We now prove the Nullstellensatz: Suppose k is algebraically closed, and let m be a maximal ideal
of R = k[z1,...,x,]. The warm-up tells us that L := k[zy,...,x,]/m is a finitely-generated
k-algebra, and maximality of m implies that L is also a field.

i. Consider the sequence k — R — R/m = L, and explain why the composition k — L must
be an isomorphism. Hint: Consider an earlier consequence, and use the fact that k = k.

ii. Let a; € k be the elements that correspond to Z; € L under this isomorphism, and let
¢ : k[z1,...,2,] = k be the k-algebra map defined by z; — «;. Verify that

klz1,...,z,) —=k

commutes, where the horizontal map is ¢, the vertical map is the quotient map, and the
diagonal map is the inverse of the isomorphism k — L.

iii. Use this diagram to explain why the ideals (1 — a4, ..., 2, — ;) and m both lie in ker .
Conclude your proof by explaining why this forces these ideals to be equal.

iv. Nullstellen-what? From German, Nullstellensatz translates to zero-locus-theorem. Prove
the following corollary, which explains the name: Suppose that I is an ideal of k[x1, . .., z,],
where k = k. Then [ is proper if and only if the polynomials in / have a common zero, i.e.,
there exists a € k™ for which f(a) = 0 for every f € I.

Lemma. Let S be a polynomial ring overk in some fixed variables, and fix a nonzero polynomial f € S.
Given a variable x, there exists a change of variables—i.e., an k-algebra automorphism of S—that fixes x,
and transforms f into a nonzero k-multiple of a monic polynomial in x with coefficients in the polynomial
ring over k generated by the other variables.

Example. Consider f = zy € k[z, y|, which neither monic in x nor in y. However, after applying
the change of variables given by x +— zandy — x + vy, f — x(z +y) = 22 + xy, which is

3This version of the theorem is sometimes called the “weak form” of Nullstellensatz; the full version gives a strong
correspondence between algebra and geometry. You will get a taste of this in the last part of following problem.
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monic in S = T[z], with T = k[y]. Similarly, if we instead send z +— = + y and y +— vy, then
f = (z +y)y = zy + ¥ which is monic in y when we consider its coefficients to be in k[z].

8. Proving the lemma. Given a nonzero f € S = k[zg, z1,. .., x,], to prove the lemma, we seek to
define an automorphism S — S of k-algebras such that xy — ¢ and
forelaf +qag ™ + -+ o1 + Gm) (%)
where ¢ € k is nonzero, m is a natural number, and each ¢; = ¢;(x1,...,2,) € k[x1,..., 2]
(@) Fix g1, ..., 9n € k[zo], and consider the k-algebra map k[zo, ..., z,] — k[x,...,z,] given by

(b)

(c)

xo — xo and x; — x; + ¢; for each © # 0. Explain why this is an k-algebra automorphism by
briefly describing an inverse map that is also an k-algebra map.

Fix an integer b > 0, and consider the k-algebra automorphism 1, of S defined by

{.CL’O 1=10

T — i

With this change of variables, explain why (é) holds when f = czg°z{" - - - 2%, where ¢ € k*.
Hint: The m value in this case should be m = ag + a1b + - - - + a,b".

Now take an arbitrary nonzero f € .S, and fix an integer b larger than any exponent appearing
in any supporting monomial of f. Explain why 1, satisfies (éb).

Hint: Express f as the finite sum of terms of the form c,2* = cazy’ - - - 29", where a =
(ag,as,...,a,) € N""1. Where does v, send f? Finally, recall that every nonnegative inte-
ger has a unique base b expansion. Where does the choice of large b come into play?

9. Proof of Noether Normalization. Fix R be a finitely-generated k algebra. We will now prove*
Noether Normalization by inducing on the number of generators of R over A.

(a)
(b)

(c)

(d)

(e)

Explain why the base case n = 0 is trivial.

Consider our inductive hypothesis: Suppose gy, . . ., g,, are k-algebra generators for R, and that
Noether Normalization holds for all k-algebras generated by fewer elements. Explain why the
inductive step is trivial if gy, . . ., g,, are algebraically independent over k.

Otherwise, there is some polynomial F' € k[z, ..., x,] such that F(go,...,g,) = 0. Fixb € N
greater than any exponent appearing in I, and set hy = go and h; = g; + g} for each i # 0.
Explain why A = k[go, g1, - - -, gn) and B = k[hg, h1, ..., h,] both equal R.

Hint: A = R by our inductive hypothesis. To see that A C B, why does it suffice to show that

g; € B for all ¢?

Use the k-algebra automorphism v, from #8 to explain why F'(go,...,¢,) = 0in R can be
expressed in terms of hy, . .., h, as c(hy" + alhgl_l +- -+ am_1ho+ ay) = 0 where ¢ € k* and
eacha; € D =klhy, ..., hy].

Conclude that hy is integral over D = k[h4, ..., h,), and so R = B is module finite over D.
Finally, apply the inductive hypothesis to the finitely generated k-algebra D to conclude that
there is a Noether normalization N C D for D. But if N C D is module finite and D C A is
module finite, then isn’t the composition of module finite extensions module finite? Conclude
that IV is a Noether normalization of R!

* At this point, based on everything that follows from it, you should be left with the impression that Noether Normal-
ization is important, and it is. Even better, its proof isn’t too complicated!
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