Worksheet 17: Dimension Theory for Finitely Generated k-algebras

Throughout, R and S are a commutative rings with unity, and k denotes a field.

Definition. A saturated chain of prime ideals of R of length d is a chain $P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_d$ of primes of R such that for each i, there is no $Q \in \text{Spec}(R)$ satisfying $P_i \subsetneq Q \subsetneq P_{i+1}$.

- 1. Warm-up: Equivalent formulations of Krull dimension. Recall that the Krull dimension of a ring R is the supremum over all n such that there exists an arbitrary chain in Spec(R) of length n.
 - (a) (Krull dimension via saturated chains) Briefly explain why $\dim R$ equals the supremum of all n for which there exists a *saturated* chain of prime ideals of R of length n.
 - (b) (Krull dimension of a domain) Briefly explain why if R is a domain, then dim R equals the supremum of all n for which there exists a saturated chain of primes starting at the zero ideal 0.
 - (c) (Krull dimension and height) Formulate a description of the height of a prime ideal P of R in terms of saturated chains. In addition, describe dim R in terms of the heights of all maximal ideals of R. What does your description tell us about the Krull dimension of a local ring?

Theorem. If R is a UFD, then every $P \in \text{Spec}(R)$ with height one is a principal ideal.

2. Height one primes in a UFD. Prove the above theorem.

Hint: Why must *P* be nonzero? Also, recall that every irreducible element in a UFD is prime.

Theorem. The Krull dimension of $k[x_1, \ldots, x_n]$ is n.

3. The dimension of a polymomial ring over a field.

- (a) Recall that in a previous worksheet, you showed that $\dim k[x_1, \ldots, x_n] \ge n$ by explicitly constructing a chain of primes of length n, and notice that equality holds when n = 0.
- (b) We will prove the statement by induction on $n \ge 0$, and we checked the base case in (a). Consider our inductive hypothesis: Suppose n > 0, and assume the theorem is true for all polynomial rings over k in n 1 variables.
- (c) Consider a saturated chain of prime ideals $0 = P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_m$ in $R = k[x_1, \ldots, x_n]$. Explain why it suffices to show that $m \le n$ to complete the proof.
- (d) Using the fact that the chain we fixed is saturated, explain why P_1 must have height one. Conclude that P_1 must be principal.
- (e) Explain why, after changing variables, we may assume that P_1 is generated by a polynomial that is monic as a polynomial in x_n with coefficients in $k[x_1, \ldots, x_{n-1}]$. *Hint*: Apply a lemma from an earlier worksheet.
- (f) Explain why R/P_1 is integral over a polynomial ring over k in n-1 variables, and conclude that dim R/P_1 equals n-1. What does this tell us about m? Conclude the proof.

Theorem. If R is a finitely generated k-algebra that is also a domain, then the Krull dimension of R equals the transcendence degree of the field extension of k into Frac(R), the fraction field of R.

Given a field extension $k \subseteq \mathbb{L}$, recall that a *transcendence basis* for \mathbb{L} over k is a subset Λ of \mathbb{L} with the property that every finite subset of Λ is algebraically independent over k, which is maximal in the sense that no subset of \mathbb{L} properly containing Λ satisfies this property. Transcendence bases always exist by Zorn's Lemma, and though it is a bit harder to show, all transcendence bases must all have the same cardinality, which is called the *transcendence degree* of the extension of $k \subseteq \mathbb{L}$.

4. Proof of theorem on Krull dimensions via field extensions.

- (a) Prove that if $R \hookrightarrow S$ is an integral extension of domains, then the induced map on fraction fields $\operatorname{Frac}(R) \hookrightarrow \operatorname{Frac}(S)$ is an algebraic field extension.
- (b) Let k → L be an extension of fields. Prove that a subset Λ of L is a transcendence basis for this extension if and only if every finite subset of Λ is algebraically independent over k, and the extension k(Λ) → L is an algebraic field extension.
- (c) Prove the above theorem. *Hint*: Apply Noether Normalization.

Theorem. If R is a finitely generated k-algebra that is also a domain, then every saturated chain of prime ideals of R starting at 0 and terminating at a maximal ideal have the same length, namely, the Krull dimension of R. In particular, the height of every maximal ideal of R equals dim R.

- 5. **Proof of theorem on heights of maximal ideals.** We proceed by induction on dim R.
 - (a) Verify the base case. *Hint*: The assumption that R is a domain is relevant.
 - (b) Consider the following inductive hypothesis: Given n > 0, suppose that the theorem is true for all finitely-generated k-algebras that are domains and have dimension n − 1. Let R be such a ring, but of dimension n, and consider a saturated chain of primes 0 ⊊ Q₁ ⊊ · · · ⊊ Q_ℓ with Q_ℓ a maximal ideal. To conclude our induction step, we must show that ℓ = n.
 - i. Explain why Q_1 must have height one.
 - ii. Let $A = k[x_1, \dots, x_d] \subseteq R$ be a Noether Normalization. Explain why the height of $P_1 := Q_1 \cap A$ is also one. *Hint*: Recall the Height Corollary from Going Down.
 - iii. Explain why, after a change of variables, we can assume that P_1 is generated by a polynomial that is monic in x_n with coefficients in $k[x_1, \ldots, x_{n-1}]$. Conclude that A/P_1 is module finite over a polynomial ring in n 1 variables.
 - iv. Explain why there is an induced inclusion $A/P_1 \hookrightarrow R/Q_1$ which is also module finite. Conclude that $\dim(R/Q_1) = \dim(A/P_1) = n 1$.
 - v. Why does the inductive hypothesis apply to R/Q_1 ? What does this tells us about ℓ ?
 - (c) Complete the proof of the theorem.
- 6. Consider the ring $R = k[x, y, z]/\langle xy, xz \rangle$.
 - (a) Explain why every prime ideal of R either contains \overline{x} , or contains both \overline{y} and \overline{z} .
 - (b) Find two maximal ideals of R that have different heights.
 - (c) Why does this not contradict the last statement of the previous theorem? What does this say about which of its hypotheses cannot be relaxed?
- 7. Let $A = \mathbb{Z}_P$, the localization of \mathbb{Z} at the prime ideal $P = \langle 3 \rangle$, and set R = A[t]. You may use, without proof, the fact that R is a UFD.
 - (a) Notice that A is *not* the ring obtained from \mathbb{Z} by adding an inverse for 3. Describe A concretely a subset of \mathbb{Q} .
 - (b) Verify that $\langle 3t 1 \rangle$ is a maximal ideal of R of height one. *Hint*: Doesn't $R/\langle 3t - 1 \rangle = A[t]/\langle 3t - 1 \rangle$ look like a localization of A?
 - (c) Verify that $\langle 3, t \rangle$ is a maximal ideal of R of height at least two.
 - (d) Why does this not contradict the last statement of the previous theorem? What does this say about which of its hypotheses cannot be relaxed?