
Worksheet 18: Noetherian rings and modules

Throughout, R is a commutative ring with unity, and M is an R-module.

Definition. We callM Noetherian if every ascending chain ofR-submodulesM1 ⊆M2 ⊆M3 ⊆ · · ·
of M is eventually stable, i.e., there exists an integer N > 0 for which Mn =Mn+1 for all n ≥ N .
We call R is a Noetherian ring (or just call R Noetherian) if it is Noetherian as a module over itself.

1. Warm-up: Noetherian rings.
(a) Explain what it means for R to be Noetherian, in terms of ascending chains.
(b) Verify that fields and PIDs are Noetherian rings.
(c) Must every UFD be Noetherian? Hint: Observe that the ascending union of UFDs is a UFD.
(d) Explain why, if R is Noetherian, then so is R/I , for every ideal I ⊆ R.
(e) Explain why, if R is Noetherian, then so is W−1R, for every multiplicative set W ⊆ R.

2. First examples and counterexamples.
(a) Find a pair of nonzeroR andM such that: (i)R andM are both Noetherian, (ii)R is Noetherian,

but M is not, (iii) M is not Noetherian, but R is not, and (iv) neither R nor M is Noetherian.
(b) Let R be the R-algebra consisting of all continuous functions f : [0, 1] → R, with addition and

multiplication of functions defined pointwise. Prove that R is not a Noetherian ring.
Hint: Fix a proper closed subinterval I of the unit interval, and consider the set of all f ∈ R
vanishing at each point of I .

3. Characterizations of Noetherian rings. Prove that the following conditions are equivalent.

(a) R is Noetherian.
(b) Every non-empty family of ideals {Ii}i∈Σ of R has a maximal element, i.e., there exists j ∈ Σ

such that whenever Ij ⊆ Ii for some i ∈ Σ, then Ij = Ii. Note that this condition does not require
that any member of the family be contained in such a maximal element, besides the element itself.

(c) Every ascending chain of finitely generated ideals of R is eventually stable.
(d) For every ideal I ⊆ R, and for every subset A ⊆ R with I = ⟨A⟩, there exists a finite subset

B ⊆ A such that I = ⟨B⟩.
(e) Every ideal of R is finitely generated.

(∗) Characterizations of Noetherian modules. Convince yourself that the following conditions on
an R-module M are equivalent; you are not required to write down the proof.

(a) M is a Noetherian R-module.
(b) Every non-empty family of submodules {Mi}i∈Σ of M has a maximal element, i.e., there exists

j ∈ Σ such that if i ∈ Σ and Mj ⊆Mi, then Mj =Mi.
(c) Every ascending chain of finitely generated submodules of M is eventually stable.
(d) For every submodule N ⊆ M , and for every subset A ⊆ M that generates N , there exists a

finite subset B ⊆ A that also generates N .
(e) Every submodule of M , including M itself, is finitely generated.

Proposition. If 0 → N → M → Q → 0 is a short exact sequence of R-modules, then M is a
Noetherian R-module if and only if both N and Q are Noetherian R-modules.
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Corollary. Suppose that R is Noetherian. Then an R-module M is Noetherian if and only if M is
finitely generated. In particular, every submodule of a finitely generated module of a Noetherian ring is
also finitely generated.

4. Exact sequences and Noetherian modules.
(a) After fixing names for the homomorphism appearing in the above proposition as φ : N → M

and ψ : M → Q, prove the following Lemma: If M0 ⊆ M1 ⊆ M are submodules such that
M0 ∩ φ(N) =M1 ∩ φ(N) and ψ(M0) = ψ(M1), then M0 =M1.

(b) Prove the proposition. Hint: Apply your lemma for the “ ⇐= ” implication.
(c) Prove the corollary, which is powerful in that it provides a concrete, simplified characterization

for Noetherianity of an R-module in the special case that R is a Noetherian ring.
Hint: For the “ ⇐= " implication, first prove that the finitely generated free module Rn is
Noetherian for each n ≥ 1. If M is a finitely generated R-module, can you fit it into a short
exact sequence that involves Rn, for some n?

(d) Show that the last statement in the corollary can fail by when R is not Noetherian.

Theorem (Cohen). R is Noetherian if and only if every prime ideal of R is finitely generated.

5. Noetherian rings and prime ideals.
(a) Prove the above theorem by applying a result from the first worksheet.
(b) It is natural to ask where else we might be able to replace ideal with prime ideal to obtain a

relaxed characterization of Noetherian rings. If every ascending chain of prime ideals of R is
eventually stable, then must R be Noetherian?
Hint: Can you find a non-Noetherian ring with very few prime ideals?

Theorem (Hilbert Basis Theorem). If R is a Noetherian ring, then so is R[x].

Definition. A ring S has finite type over R if S is a finitely generated R-algebra, and S is said to
be essentially of finite type over R if it is the localization of a finitely generated R-algebra at some
multiplicatively closed set.

Corollary. Every ring essentially of finite type over a Noetherian ring is also Noetherian. In particular,
every ring that is essentially of finite type over a field is Noetherian.

6. Proving the Hilbert Basis Theorem.
(a) Suppose that R is arbitrary. Given a nonzero polynomial f(x) = a0 + a1x+ · · · anxn with each

ai ∈ R, and an ̸= 0, let LT(f) = an denote the leading term of f . We adopt the convention
LT(0) = 0. Given an ideal I of R[x], prove that LT(I) := {LT(f) : f ∈ I} is a (possibly
improper) ideal of R.

Now assume that R is Noetherian, and that I is an ideal of R[x].

(b) Explain why there exist f1, . . . , fℓ ∈ I such that LT(I) = ⟨LT(f1), . . . ,LT(fℓ)⟩.
(c) Let m = max{deg(f1), . . . , deg(fℓ)}. Show that N = {g ∈ I : deg(g) ≤ m} ∪ {0} is an

R-submodule of R[x], but not an ideal of R[x].
(d) Prove that N is a finitely generated R-module.

Hint: As R is assumed to be Noetherian, we know from an earlier corollary that if we can find
a finitely generated (and hence, Noetherian) R-module M containing N , then this will force N
to be finitely generated. Seek a natural choice of M that satisfies this condition.
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(e) Prove that every element f ∈ I can be written as h+ g with h ∈ ⟨f1, . . . , fℓ⟩ and g ∈ N .
Hint: Induce on deg(f); the case when deg(f) ≤ m is trivial.

(f) Conclude the proof of the Hilbert Basis Theorem by explaining why I is finitely generated.
(g) Observe that almost every explicitly defined ring we’ve seen in this course (the exceptions being

rings such as the R-algebra of continuous function f : [0, 1] → R, and polynomial rings with
countably many variables) are essentially of finite type over a field, or over a PID. Then prove
the above corollary, showing that each of these rings is Noetherian.
Hint: Deduce a generalization of the Hilbert Basis Theorem that involves finitely many variables,
and apply some results from the Warm-up.
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