Worksheet 18: Noetherian rings and modules

Throughout, R is a commutative ring with unity, and M is an R-module.

Definition. We call M Noetherian if every ascending chain of R-submodules $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ of M is eventually stable, i.e., there exists an integer N > 0 for which $M_n = M_{n+1}$ for all $n \ge N$. We call R is a Noetherian ring (or just call R Noetherian) if it is Noetherian as a module over itself.

1. Warm-up: Noetherian rings.

- (a) Explain what it means for R to be Noetherian, in terms of ascending chains.
- (b) Verify that fields and PIDs are Noetherian rings.
- (c) Must every UFD be Noetherian? Hint: Observe that the ascending union of UFDs is a UFD.
- (d) Explain why, if R is Noetherian, then so is R/I, for every ideal $I \subseteq R$.
- (e) Explain why, if R is Noetherian, then so is $W^{-1}R$, for every multiplicative set $W \subseteq R$.

2. First examples and counterexamples.

- (a) Find a pair of nonzero R and M such that: (i) R and M are both Noetherian, (ii) R is Noetherian, but M is not, (iii) M is not Noetherian, but R is not, and (iv) neither R nor M is Noetherian.
- (b) Let R be the \mathbb{R} -algebra consisting of all continuous functions $f:[0,1]\to\mathbb{R}$, with addition and multiplication of functions defined pointwise. Prove that R is not a Noetherian ring. Hint: Fix a proper closed subinterval I of the unit interval, and consider the set of all $f\in R$ vanishing at each point of I.
- 3. Characterizations of Noetherian rings. Prove that the following conditions are equivalent.
 - (a) R is Noetherian.
 - (b) Every non-empty family of ideals $\{I_i\}_{i\in\Sigma}$ of R has a maximal element, i.e., there exists $j\in\Sigma$ such that whenever $I_j\subseteq I_i$ for some $i\in\Sigma$, then $I_j=I_i$. Note that this condition does not require that any member of the family be contained in such a maximal element, besides the element itself.
 - (c) Every ascending chain of *finitely generated* ideals of R is eventually stable.
 - (d) For every ideal $I \subseteq R$, and for every subset $A \subseteq R$ with $I = \langle A \rangle$, there exists a *finite* subset $\mathcal{B} \subseteq A$ such that $I = \langle \mathcal{B} \rangle$.
 - (e) Every ideal of R is finitely generated.
- (*) Characterizations of Noetherian modules. Convince yourself that the following conditions on an R-module M are equivalent; you are not required to write down the proof.
 - (a) *M* is a Noetherian *R*-module.
 - (b) Every non-empty family of submodules $\{M_i\}_{i\in\Sigma}$ of M has a maximal element, i.e., there exists $j\in\Sigma$ such that if $i\in\Sigma$ and $M_j\subseteq M_i$, then $M_j=M_i$.
 - (c) Every ascending chain of *finitely generated* submodules of M is eventually stable.
 - (d) For every submodule $N \subseteq M$, and for every subset $A \subseteq M$ that generates N, there exists a *finite* subset $B \subseteq A$ that also generates N.
 - (e) Every submodule of M, including M itself, is finitely generated.

Proposition. If $0 \to N \to M \to Q \to 0$ is a short exact sequence of R-modules, then M is a Noetherian R-module if and only if both N and Q are Noetherian R-modules.

Corollary. Suppose that R is Noetherian. Then an R-module M is Noetherian if and only if M is finitely generated. In particular, every submodule of a finitely generated module of a Noetherian ring is also finitely generated.

4. Exact sequences and Noetherian modules.

- (a) After fixing names for the homomorphism appearing in the above proposition as $\varphi: N \to M$ and $\psi: M \to Q$, prove the following **Lemma**: If $M_0 \subseteq M_1 \subseteq M$ are submodules such that $M_0 \cap \varphi(N) = M_1 \cap \varphi(N)$ and $\psi(M_0) = \psi(M_1)$, then $M_0 = M_1$.
- (b) Prove the proposition. *Hint*: Apply your lemma for the " \Leftarrow " implication.
- (c) Prove the corollary, which is powerful in that it provides a concrete, simplified characterization for Noetherianity of an R-module in the special case that R is a Noetherian ring.

 Hint: For the " \Leftarrow " implication, first prove that the finitely generated free module R^n is Noetherian for each $n \geq 1$. If M is a finitely generated R-module, can you fit it into a short
 - Noetherian for each $n \ge 1$. If M is a finitely generated R-module, can you fit it into a short exact sequence that involves R^n , for some n?
- (d) Show that the last statement in the corollary can fail by when R is not Noetherian.

Theorem (Cohen). R is Noetherian if and only if every **prime** ideal of R is finitely generated.

5. Noetherian rings and prime ideals.

- (a) Prove the above theorem by applying a result from the first worksheet.
- (b) It is natural to ask where else we might be able to replace *ideal* with *prime ideal* to obtain a relaxed characterization of Noetherian rings. If every ascending chain of prime ideals of R is eventually stable, then must R be Noetherian?

Hint: Can you find a non-Noetherian ring with very few prime ideals?

Theorem (Hilbert Basis Theorem). *If* R *is a Noetherian ring, then so is* R[x].

Definition. A ring S has *finite type over* R if S is a finitely generated R-algebra, and S is said to be *essentially of finite type over* R if it is the localization of a finitely generated R-algebra at some multiplicatively closed set.

Corollary. Every ring essentially of finite type over a Noetherian ring is also Noetherian. In particular, every ring that is essentially of finite type over a field is Noetherian.

6. Proving the Hilbert Basis Theorem.

(a) Suppose that R is arbitrary. Given a nonzero polynomial $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ with each $a_i \in R$, and $a_n \neq 0$, let $\mathrm{LT}(f) = a_n$ denote the leading term of f. We adopt the convention $\mathrm{LT}(0) = 0$. Given an ideal I of R[x], prove that $\mathrm{LT}(I) := \{\mathrm{LT}(f) : f \in I\}$ is a (possibly improper) ideal of R.

Now assume that R is Noetherian, and that I is an ideal of R[x].

- (b) Explain why there exist $f_1, \ldots, f_\ell \in I$ such that $LT(I) = \langle LT(f_1), \ldots, LT(f_\ell) \rangle$.
- (c) Let $m = \max\{\deg(f_1), \ldots, \deg(f_\ell)\}$. Show that $N = \{g \in I : \deg(g) \leq m\} \cup \{0\}$ is an R-submodule of R[x], but not an ideal of R[x].
- (d) Prove that N is a finitely generated R-module.

Hint: As R is assumed to be Noetherian, we know from an earlier corollary that if we can find a finitely generated (and hence, Noetherian) R-module M containing N, then this will force N to be finitely generated. Seek a natural choice of M that satisfies this condition.

- (e) Prove that every element $f \in I$ can be written as h + g with $h \in \langle f_1, \dots, f_\ell \rangle$ and $g \in N$. Hint: Induce on $\deg(f)$; the case when $\deg(f) \leq m$ is trivial.
- (f) Conclude the proof of the Hilbert Basis Theorem by explaining why I is finitely generated.
- (g) Observe that almost every explicitly defined ring we've seen in this course (the exceptions being rings such as the \mathbb{R} -algebra of continuous function $f:[0,1]\to\mathbb{R}$, and polynomial rings with countably many variables) are essentially of finite type over a field, or over a PID. Then prove the above corollary, showing that each of these rings is Noetherian.

Hint: Deduce a generalization of the Hilbert Basis Theorem that involves finitely many variables, and apply some results from the Warm-up.