Worksheet 19: Nakayama's Lemma

Throughout, R is a commutative ring with unity, k is a field, and M is an R-module. Recall the definition of a local ring from the *Localization of Rings* worksheet.

Definition. A *local ring* is a ring with a unique maximal ideal. If R is local with maximal ideal \mathfrak{m} , we often denote it concisely by the pair (R, \mathfrak{m}) if we wish to refer to its maximal ideal.

Definition. If *R* is local with maximal ideal \mathfrak{m} , then the *residue field* of *R* is $\mathbf{k} = R/\mathfrak{m}$. If we wish to refer to its residue field, we often denote the local ring concisely as the triple $(R, \mathfrak{m}, \mathbf{k})$.

1. Warm-up: Local rings.

- (a) If (R, \mathfrak{m}) is a local ring, what are its units?
- (b) If *I* is a proper ideal of *R* and every element of $R \setminus I$ is a unit, prove that *I* is a maximal ideal and (R, I) is local. Then use this, with (a), to characterize local rings in terms of their units.
- (c) Recall from #4 in the *Localization of Rings* worksheet that if P is a prime ideal of R, then the localization R_P is a local ring. Compute the residue fields of $k[x, y, z]_{\langle x, y, z \rangle}$ and $\mathbb{Z}_{\langle 2 \rangle}$. You might want to look back on #5 from the *Localization of Rings* worksheet.
- (d) Let k[[x]] denote the set of formal expressions fo the form ∑_{n=0}[∞] a_nxⁿ, where all a_i ∈ k. Under the natural addition and multiplication of these power series expressions, convince yourself that k[[x]] is a ring, which we call the *ring of formal power series* in x over k. Then prove that it is a local ring using (b) by first conjecturing its unique maximal ideal m, and then constructing an inverse for any f ∉ m inductively in terms of its coefficients.
- (e) Convince yourself that for any n ≥ 0, the ring k[[x₁,...,x_n]] of formal power series in x₁,...,x_n over k is a local ring. What is its unique maximal ideal m, and its residue field? To show that f ∉ m is indeed a unit, first write f = f₀+f₁+..., where f_d ∈ k[x₁,...,x_n] is homogeneous of degree d, and proceed similarly as you did in (d) to ensure the existence of f⁻¹ ∈ k[[x₁,...,x_n]].

Definition. If *I* is an ideal of *R*, and *M* is an *R*-module, then *IM* denotes the *R*-submodule of *M* consisting of finite sums of elements of the form au, where $a \in I$ and $u \in M$.

Theorem (Nakayama's Lemma, Version 1). Let (R, \mathfrak{m}) be a local ring. If M is a finitely-generated R-module and $\mathfrak{m}M = M$, then M = 0.

2. Proving Nakayama's Lemma, V1. Fix (R, \mathfrak{m}) local.

- (a) Prove Nakayama's Lemma, V1 in the case that M is generated by one element.
 Hint: If M = R⟨u⟩, explain where there exists a ∈ m such that au = u. Simplify, and appeal to the Warm-up to see that a − 1 is a unit.
- (b) Suppose n > 1 and $u_1, \ldots, u_n \in M$ generate M. Let N be the submodule of M generated by u_n . If $\mathfrak{m}M = M$, show that L = M/N satisfies $\mathfrak{m}L = L$.
- (c) Finish the proof of Nakayama's Lemma, V1 by inducing on the number of generators of M.
- 3. The quotient $M/\mathfrak{m}M$. Suppose that $(R, \mathfrak{m}, \mathsf{k})$ is local, and M is an R-module.
 - (a) Construct an *R*-module isomorphism $k \otimes_R M \cong M/\mathfrak{m}M$. follows from tensor product worksheet

2

- (b) Describe the natural k-vector space structure on each of $k \otimes_R M$ and $M/\mathfrak{m}M$, and verify that your map in (a) is also a k-vector space isomorphism.
- (c) If M is a finitely generated R-module, prove that $M/\mathfrak{m}M$ is finite dimensional k-vector space.
- (d) Compute the k-vector space dimension of $M/\mathfrak{m}M$ in the following cases.
 - i. $(R, \mathfrak{m}, \mathsf{k})$ is an arbitrary local ring, and $M = R^{\oplus 5}$. *Hint*: Tensor products commute with direct sums.

 - ii. $R = \mathsf{k}[x, y, z]_{\langle x, y, z \rangle}$ and $M = \mathfrak{m} = \langle x, y, z \rangle$. iii. $R = \mathsf{k}[\![x, y, z]\!]/\langle x^2 + y^3 + z^5 \rangle$ and $M = \mathfrak{m} = \langle \overline{x}, \overline{y}, \overline{z} \rangle$. (Why is (R, \mathfrak{m}) local here?)

Theorem (Nakayama's Lemma, Version 2). Let $(R, \mathfrak{m}, \mathsf{k})$ be a local ring. Let M be a finitely generated *R*-module, and fix $u_1, \ldots, u_n \in M$. Then u_1, \cdots, u_n generate M as an *R*-module if and only if the images $\overline{u}_1, \ldots, \overline{u}_n \in M/\mathfrak{m}M$ span $M/\mathfrak{m}M$ as a k-vector space.

4. Prove Nakayama's Lemma, V2.

Hint: You proved the " \implies " implication in #2. For the " \Leftarrow " implication, let N be the R-module generated by u_1, \ldots, u_d . Show that $M = N + \mathfrak{m}M$, and then explain why this allows us to apply Nakayama's Lemma to the quotient L = M/N.

5. Consequences of Nakayama's Lemma.

- (a) Suppose that for some proper ideal I of a local ring R, IM = M for some finitely generated *R*-module *M*. Prove that M = 0.
- (b) Given an R-module M, we call a subset $\mathcal{A} \subseteq M$ a minimal generating set if \mathcal{A} generates M, but no proper subset of \mathcal{A} generates M. Suppose that $(R, \mathfrak{m}, \mathsf{k})$ is local, and M is a finitely generated *R*-module. Prove that \mathcal{A} is a minimal generating set for M if and only if the image of \mathcal{A} in the quotient $M/\mathfrak{m}M$ forms a basis for the k-vector space $M/\mathfrak{m}M$. Conclude that any two minimal generating sets of a finitely generated module over a local ring have the same cardinality.
- (c) Suppose that if D is a (not necessarily local) domain that is not a field. Prove that its fraction field Frac(D) is *not* finitely generated as a *D*-module. *Hint*: If R is the localization of D at any prime ideal of Dexplain why $D \subseteq R \subseteq Frac(R)$. If $\operatorname{Frac}(R)$ is finitely generated as an *D*-module, explain why $\operatorname{Frac}(R)$ must be finitely generated as an *R*-module. Finally, apply Nakayama's Lemma to the finitely generated *R*-module Frac(R)

to get a contradiction. Where did you use that D was not a field?

- (d) Let $\varphi: M \to N$ be a homomorphism of finitely generated *R*-modules, where (R, \mathfrak{m}) is local.
 - i. Prove that φ is surjective if and only if the induced map $\overline{\varphi}: M/\mathfrak{m}M \to N/\mathfrak{m}N$ of k-vector spaces is surjective.
 - ii. The corresponding statement obtained by replacing *surjective* with *injective* is false. In fact, both implications are false! Construct examples to demonstrate this. *Hint*: Let $R = \mathbb{Z}_{(p)}$ be the localization of \mathbb{Z} at the ideal generated by a nonzero prime integer p, and consider the maps $R \xrightarrow{p} R$ and $R \to R/\langle p \rangle$.

6. The hypotheses of Nakayama's Lemma.

(a) Let R = k[x], and let M be the R-algebra $M = R_x = k[x][x^{-1}]$, i.e., the localization of R at the multiplicative set $\{1, x, x^2, \ldots\}$. Explain why the maximal ideal $\mathfrak{m} = \langle x \rangle \subseteq R$ satisfies $\mathfrak{m}M = M$. What does this not contradict Nakayama's Lemma, V1?

(b) Demonstrate that the hypothesis that R is local in Nakayama's Lemma, V1 cannot be removed by constructing a non-local ring R and a nonzero finitely generated R-module M such that $\mathfrak{m}M = M$ for some maximal ideal \mathfrak{m} of R. *Hint*: There are simple examples, e.g., try $R = \mathbb{R}[x]$.