
Worksheet 19: Nakayama’s Lemma

Throughout, R is a commutative ring with unity, k is a field, and M is an R-module. Recall the
definition of a local ring from the Localization of Rings worksheet.

Definition. A local ring is a ring with a unique maximal ideal. If R is local with maximal ideal m, we
often denote it concisely by the pair (R,m) if we wish to refer to its maximal ideal.

Definition. If R is local with maximal ideal m, then the residue field of R is k = R/m. If we wish to
refer to its residue field, we often denote the local ring concisely as the triple (R,m, k).

1. Warm-up: Local rings.
(a) If (R,m) is a local ring, what are its units?
(b) If I is a proper ideal of R and every element of R \ I is a unit, prove that I is a maximal ideal

and (R, I) is local. Then use this, with (a), to characterize local rings in terms of their units.
(c) Recall from #4 in the Localization of Rings worksheet that if P is a prime ideal of R, then the

localization RP is a local ring. Compute the residue fields of k[x, y, z]⟨x,y,z⟩ and Z⟨2⟩. You might
want to look back on #5 from the Localization of Rings worksheet.

(d) Let kJxK denote the set of formal expressions fo the form
∞∑
n=0

anx
n, where all ai ∈ k. Under the

natural addition and multiplication of these power series expressions, convince yourself that
kJxK is a ring, which we call the ring of formal power series in x over k. Then prove that it is a
local ring using (b) by first conjecturing its unique maximal ideal m, and then constructing an
inverse for any f /∈ m inductively in terms of its coefficients.

(e) Convince yourself that for any n ≥ 0, the ring kJx1, . . . , xnK of formal power series in x1, . . . , xn

over k is a local ring. What is its unique maximal ideal m, and its residue field? To show that
f /∈ m is indeed a unit, first write f = f0+f1+· · · , where fd ∈ k[x1, . . . , xn] is homogeneous of
degree d, and proceed similarly as you did in (d) to ensure the existence of f−1 ∈ kJx1, . . . , xnK.

Definition. If I is an ideal of R, and M is an R-module, then IM denotes the R-submodule of M
consisting of finite sums of elements of the form au, where a ∈ I and u ∈ M .

Theorem (Nakayama’s Lemma, Version 1). Let (R,m) be a local ring. If M is a finitely-generated
R-module and mM = M , then M = 0.

2. Proving Nakayama’s Lemma, V1. Fix (R,m) local.

(a) Prove Nakayama’s Lemma, V1 in the case that M is generated by one element.
Hint: If M = R⟨u⟩, explain where there exists a ∈ m such that au = u. Simplify, and appeal to
the Warm-up to see that a− 1 is a unit.

(b) Suppose n > 1 and u1, . . . , un ∈ M generate M . Let N be the submodule of M generated by
un. If mM = M , show that L = M/N satisfies mL = L.

(c) Finish the proof of Nakayama’s Lemma, V1 by inducing on the number of generators of M .

3. The quotient M/mM . Suppose that (R,m, k) is local, and M is an R-module.

(a) Construct an R-module isomorphism k ⊗R M ∼= M/mM . follows from tensor product work-
sheet
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(b) Describe the natural k-vector space structure on each of k ⊗R M and M/mM , and verify that
your map in (a) is also a k-vector space isomorphism.

(c) If M is a finitely generated R-module, prove that M/mM is finite dimensional k-vector space.
(d) Compute the k-vector space dimension of M/mM in the following cases.

i. (R,m, k) is an arbitrary local ring, and M = R⊕5.
Hint: Tensor products commute with direct sums.

ii. R = k[x, y, z]⟨x,y,z⟩ and M = m = ⟨x, y, z⟩.
iii. R = kJx, y, zK/⟨x2 + y3 + z5⟩ and M = m = ⟨x, y, z⟩. (Why is (R,m) local here?)

Theorem (Nakayama’s Lemma, Version 2). Let (R,m, k) be a local ring. Let M be a finitely generated
R-module, and fix u1, . . . , un ∈ M . Then u1, · · · , un generate M as an R-module if and only if the
images u1, . . . , un ∈ M/mM span M/mM as a k-vector space.

4. Prove Nakayama’s Lemma, V2.

Hint: You proved the “ =⇒ " implication in #2. For the “ ⇐= " implication, let N be the R-module
generated by u1, . . . , ud. Show that M = N +mM , and then explain why this allows us to apply
Nakayama’s Lemma to the quotient L = M/N .

5. Consequences of Nakayama’s Lemma.

(a) Suppose that for some proper ideal I of a local ring R, IM = M for some finitely generated
R-module M . Prove that M = 0.

(b) Given an R-module M , we call a subset A ⊆ M a minimal generating set if A generates M , but
no proper subset of A generates M . Suppose that (R,m, k) is local, and M is a finitely generated
R-module. Prove that A is a minimal generating set for M if and only if the image of A in the
quotient M/mM forms a basis for the k-vector space M/mM . Conclude that any two minimal
generating sets of a finitely generated module over a local ring have the same cardinality.

(c) Suppose that if D is a (not necessarily local) domain that is not a field. Prove that its fraction
field Frac(D) is not finitely generated as a D-module.
Hint: If R is the localization of D at any prime ideal of Dexplain why D ⊆ R ⊆ Frac(R). If
Frac(R) is finitely generated as an D-module, explain why Frac(R) must be finitely generated
as an R-module. Finally, apply Nakayama’s Lemma to the finitely generated R-module Frac(R)
to get a contradiction. Where did you use that D was not a field?

(d) Let φ : M → N be a homomorphism of finitely generated R-modules, where (R,m) is local.
i. Prove that φ is surjective if and only if the induced map φ : M/mM → N/mN of k-vector

spaces is surjective.
ii. The corresponding statement obtained by replacing surjective with injective is false. In fact,

both implications are false! Construct examples to demonstrate this.
Hint: Let R = Z⟨p⟩ be the localization of Z at the ideal generated by a nonzero prime integer
p, and consider the maps R

p−→ R and R → R/⟨p⟩.

6. The hypotheses of Nakayama’s Lemma.
(a) Let R = kJxK, and let M be the R-algebra M = Rx = kJxK[x−1], i.e., the localization of R

at the multiplicative set {1, x, x2, . . .}. Explain why the maximal ideal m = ⟨x⟩ ⊆ R satisfies
mM = M . What does this not contradict Nakayama’s Lemma, V1?
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(b) Demonstrate that the hypothesis that R is local in Nakayama’s Lemma, V1 cannot be removed
by constructing a non-local ring R and a nonzero finitely generated R-module M such that
mM = M for some maximal ideal m of R. Hint: There are simple examples, e.g., try R = R[x].
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