Worksheet 20: The *I*-adic Topology and Completion

Throughout, R is a commutative ring with unity, I is a proper ideal of R, M is an R-module, and k denotes a field. Let $R^{\mathbb{N}}$ denote the ring of all sequences $(r_n)_{n \in \mathbb{N}}$ with terms in R.

Definition. Consider a sequence $(r_n)_{n \in \mathbb{N}}$ in $\mathbb{R}^{\mathbb{N}}$.

- 1. The sequence is *Cauchy in the I-adic topology* if for every $t \in \mathbb{N}$, there exists $d \in \mathbb{N}$ such that $r_n r_m \in I^t$ whenever $n, m \ge d$. We will denote the set of all Cauchy sequences by $\mathfrak{C}_I(R)$.
- 2. The sequence *converges to zero* if for every $t \in \mathbb{N}$, there exists $d \in \mathbb{N}$ such that whenever $n \ge d$, we have that $r_n \in I^t$. We denote the set of sequences that converge to zero by $\mathfrak{C}^0_I(R)$.

1. Cauchy sequences.

- (a) Show that the subset $\mathfrak{C}_I(R)$ is a subring of $R^{\mathbb{N}}$.
- (b) Show that the map $R \to \mathfrak{C}_I(R)$ sending r to the constant sequence (r) is a ring homomorphism, making $\mathfrak{C}_I(R)$ into an R-algebra.
- (c) Prove that $\mathfrak{C}_I^0(R)$ is an ideal of $\mathfrak{C}_I(R)$.
- (d) Observe that a subsequence of a Cauchy sequence is Cauchy, and differs from the original one by a sequence that converges to zero.

Definition. The completion of R in the I-adic topology is the ring $\widehat{R}^I = \mathfrak{C}_I(R)/\mathfrak{C}_I^0(R)$.

- 2. Each element of \hat{R}^{I} is an equivalence class of Cauchy sequences that differ by ones converging to zero, which we call a *limit of a Cauchy sequence in* R. Compare this to the construction of the real numbers as the collection of limits of Cauchy sequences of rational numbers.
- 3. Define a natural ring map $R \to \widehat{R}^I$. What is its kernel? If (R, \mathfrak{m}) is Noetherian and local, can you show that $R \to \widehat{R}^{\mathfrak{m}}$ is injective?
- 4. Let $R = \mathbb{Z}$ and $I = \langle p \rangle$ for p a prime integer. Show that

$$\left(\sum_{i=0}^{n} p^{i}\right)_{n \in \mathbb{N}} = (1, 1+p, 1+p+p^{2}, 1+p+p^{2}+p^{3}, \ldots)$$

is a Cauchy sequence for the $\langle p \rangle$ -adic (also called the *p*-adic) topology on \mathbb{Z} . Show also that it represents the inverse of 1 - p in the completion $\widehat{\mathbb{Z}}^{\langle p \rangle 1}$.

- 5. Let $R = \mathsf{k}[x, y]$ and $I = \langle x, y \rangle$.
 - (a) Show that

$$\left(\sum_{i=0}^{n} r_i x^i y^{i+2}\right)_{n \in \mathbb{N}} = (r_0 y^2, r_0 y^2 + r_1 x y^3, r_0 y^2 + r_1 x y^3 + r_2 x^2 y^4, \ldots)$$

is a Cauchy sequence in the *I*-adic topology

(b) Find another Cauchy sequence with the same limit as the one in (a) (i.e., it should represent the same element of \hat{R}^{I} , or equivalently, differ by a sequence converging to zero).

¹This is the ring of *p*-adic integers, used often in number theory, and often denoted $\widehat{\mathbb{Z}}_p, \mathbb{Z}_p$, or \mathbf{Z}_p .

2

- (c) Describe a natural ring map k[[x, y]] → R^I taking a power series ∑_{i=0}[∞] r_{ij}xⁱy^j to an equivalence class of Cauchy sequences. Can you show that it's injective? *Hint*: To come up with the map, think *successive truncations*.
- 6. Explain how to think of an element of \widehat{R}^{I} (non-uniquely) as an infinite sum $\sum_{n=0}^{\infty} x_n$, where $x_n \in I^n$. Try using this idea to prove that your map from 5(c) is surjective.

Theorem. Let $\mathfrak{m} = \langle x_1, \ldots, x_n \rangle$ be the homogeneous maximal ideal of $S = \mathsf{k}[x_1, \ldots, x_n]$. Then $\widehat{S}^{\mathfrak{m}} \cong \mathsf{k}[\![x_1, \ldots, x_n]\!]$. Furthermore, given $g_1, \ldots, g_\ell \in S = \mathsf{k}[x_1, \ldots, x_n] \subseteq \mathsf{k}[\![x_1, \ldots, x_n]\!] = \widehat{S}^{\mathfrak{m}}$,

if
$$R = \mathsf{k}[x_1, \ldots, x_n]/\langle g_1, \ldots, g_t \rangle$$
, then $\widehat{R}^I \cong \mathsf{k}[\![x_1, \ldots, x_n]\!]/\langle g_1, \ldots, g_t \rangle$.

- 7. Assume the theorem. Let $R = \mathbb{R}[x, y]/\langle y^2 x^2 x^3 \rangle$, and let $\mathfrak{m} = \langle x, y \rangle \subseteq R$.
 - (a) Prove that R is a domain.
 - (b) Show that $\widehat{R}^{\mathfrak{m}}$ is not a domain. *Hint*. Find a power series representing $\sqrt{1+x}$.
 - (c) Sketch the curve $y^2 = x^3 + x^2$. There is a sense that the minimal primes of $\widehat{R}^{\mathfrak{m}}$ can be identified by focusing in a very small neighborhood of the origin. How is this reflected in your picture?
- 8. Let $(r_n)_{n \in \mathbb{N}} \in \mathfrak{C}_I(R)$ be a Cauchy sequence, and fix $t \in \mathbb{N}$.
 - (a) Explain why the sequence of residues $(r_n \mod I^t)_{n \in \mathbb{N}}$ is eventually constant as $n \to \infty$.
 - (b) Use (a) to show that there is a surjective ring homomorphism $\mathfrak{C}_I(R) \twoheadrightarrow R/I^t$.
 - (c) Use (b) to show that there is a surjective ring homomorphism $\widehat{R}^I \twoheadrightarrow R/I^t$.
 - (d) Show that for any $s \leq t$, the map in (c) for s is the composition $\widehat{R}^I \to R/I^t \to R/I^s$.

Definition. Consider a sequence $(u_n)_{n \in \mathbb{N}}$ whose terms come from a fixed R-module M. We call (u_n) *Cauchy in the I-adic topology* if for every $t \in \mathbb{N}$, there exists $d \in \mathbb{N}$ such that whenever $n, m \geq d$, we have that $u_n - u_m \in I^t M$. We will denote the set of all Cauchy sequences with terms in M by $\mathfrak{C}_I(M)$. The sequence (u_n) converges to zero if for every $t \in \mathbb{N}$, there exists $d \in \mathbb{N}$ such that $u_n \in I^t M$ whenever $n \geq d$. We denote the set of all sequences with terms in M that converge to zero by $\mathfrak{C}_I^0(M)$.

9. Cauchy sequences in M.

- (a) Prove that $\mathfrak{C}_I(M)$ is a module over the ring $\mathfrak{C}_I(R)$.
- (b) Prove that $\mathfrak{C}_{I}^{0}(M)$ forms a $\mathfrak{C}_{I}(R)$ -submodule of $\mathfrak{C}_{I}(M)$.
- (c) Prove that the abelian group $\mathfrak{C}_I(M)/\mathfrak{C}_I^0(M)$ has the structure of an \widehat{R}^I -module.

Definition. We call the \widehat{R}^{I} -module $\widehat{M}^{I} = \mathfrak{C}_{I}(M)/\mathfrak{C}_{I}^{0}(M)$ the completion of M along I.